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ABSTRACT

Presented is a new method of separating the zeros of a Finite

Impulse Response (FIR) filter producing an optimal digital filter

or surface acoustic wave (SAW) design implementation. Overviews of

zero extraction algorithms and of FIR filter design using the Remez

Exchange algorithm are presented (McClellan et al. 1973).

The computer aided design (CAD) procedure presented allows the

designer to specify the general filter characteristic which the

Remez algorithm translates to FIR time domain coefficients. These

coefficients are readily translated to the frequency (z) domain,

producing an Uth order polynomial in z. The characteristic

oolynomial is factored to determine all roots or zeros using a

three-stage factoring program presented by M.A. Jenkins (1975). The

roots are optimally separated into two groups, each of which is

recomrined to form mutually exclusive functions. The two

functions are then implemented as transducers of a SAW device or

as a two-processor digital filter. The concept may be extended

to more than two subgroups for multi-processor digital filter designs.
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CHAPTER I

INTRODUCTI ON

Numerous techniques exist for designing and implementing

finite impulse response (FIR) filters. Many of these techniques

can be traced to antenna array design methods popularized in the

1940s and 1950s (Balanis 1982). Among the more prominent antenna

array design techniques are the methods by Fourier transform,

Schelkunoff polynomial, Dolph-Chebyshev, Taylor line-source

(Chebyshev Error) and Woodward. These have spawned many of the

popular contemporary FIR design techniques such as the Remez

exchange algorithm based on the Chebyshev Error method, popularized

by McClellan, Parks and Rabiner (1973) and non-iterative

eigenfunction synthesis design, introduced by Devries (1973) and

similar to Woodward's method. Another FIR design approach employs

a technique known as linear programming (Rabiner 1972a,b).

Each of these techniques will yield FIR transfer functions

which may be readily implemented using a surface acoustic wave (SAW)

device or a digital filter. The SAW filter, a two-transducer

device, requires that the transfer function be split in some fashion

between the transducers. The digital filter may be optionally,0

implemented using two (or more) processors to increase throughput

rate.
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The conventional approach to implementing the SAW device is,

basically, to construct one transducer such that it contains the

entire FIR and to construct the other transducer such that it

emulates a rect function. This imposes a requirement upon the first

transducer that it be capable of handling all of the dynamics

associated with the transfer function. Similarly, a single-processor

digital filter implementation demands that the processor be able to

handle a wide range of FIR coefficients, as well as all of them at

once. These are not necessarily optimal implementations.

Some efforts to evenly split the transfer function between the

two transducers of a SAW filter have been made by Morimoto, Kobayashi

and Hibino (1980) and in work by Ruppel, Ehrmann-Falkenau, Stocker

and Mader (1984, 1985). In both cases, these teams split the

transfer function into groups of alternating zeros or roots of the

transfer function about the unit circle. Any attempts to further

optimize the filters were made at the expense of altering the overall

frequency response in a process called compensation.

This thesis presents an approach to near optimally split the

transfer function between the two transducers or processors without

altering the overall frequency response. The approach seeks to

minimize non-linear and finite wordlength error effects by reducing

the required tap range for each transducer, or the required range

of coefficients used in a fixed-point digital processor.



CHAPTER II

OBJECTIVE OF PROPOSED WORK

Optimal FIR Implementation

Via Two-Transducer Design

Generally, the word "optimal" implies having attained a most

favorable condition or degree. Many parameters must be considered

during the design of a SAW or digital filter. Addressed in this thesis

are those concerned primarily with filter order and coefficient dynamic

range.

FIR Coefficients Via
the Remez Algorithm

The first stage of the design is accomplished using the Remez

exchange algorithm (Remez 1957) to generate a "best fit" Chebyshev

polynomial to a set of frequency response specifications. The

approximation, and subsequent conversion to an impulse response, is

accomplished by the modified McClellan, Parks and Rabiner (1973)

program presented in Appendix A. The program has been altered to

permit the design of filters of up to an order of one-thousand. An

initial guess of optimal filter order is obtained using a formulation

presented by Vaidyanathan (1985), which states:

-10 log 61 62 - 13
Ne= 14.6Af (2.1)

3
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where:

Af = (Ws -Wp)/21T
Ws = stop-band edge frequency

Wp = pass-band edge frequency

61 = pass-band tolerances

6 2 = stop-band tolerances

This Ne provides a starting point for the filter order in the program.

The program then iterates, increasing N each time, until the

specifications are met.

Once the FIR coefficients are found by the modified McClellan,

Parks and Rabiner (1973) program, they may be easily arranged as the

coefficients of a z-domain polynomial, i.e., the z-transform of:

h(n) = h(t - nT) an n = 0, 1, 2, ... 9 N (2.2)

0 otherwise

is

N
Hz) = Z h(n)z n  (2.3)

n=O

where:

an = the coefficients generated by the program

At this point, the impulse response could be implemented as a single

SAW transducer or as a single processor digital filter. In order to

split up the response between two transducers (or processors), H(z)

can be expressed as:

., - . . .. -..*...-. . -.V ". ' . . . *.*.o. - . ' ,' .. . . -. . ,. '.' .,., .' '.' . ', -
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N (N-k)
E~ a z }

H(z)-- k=O kz= H(z) H2(z) (2.4)

This equation shows all of the poles of a finite impulse response filter

to be at z = 0. All of the filter's zeros may be found by factoring

the numerator. A judicious separation of the zeros (and poles) can

then be assigned to Hi(z) and H2(z), the two transducers of the SAW

filter. In a similar fashion, the transfer function could be split

into Hl...N (z) for a DSP filter to increase speed and dynamic range.

Obtaining the Zeros of the Characteristic

This is the most difficult phase of the optimization. The

factoring of high order polynomials was the subject of considerable

effort by mathematicians during the mid-seventies. Of the many

techniques surveyed, the Jenkins and Traub (1970) algorithm, and

program by Jenkins (1975), appeared to be the best choice. This

algorithm employs a three-stage process to determine the roots of

an Nth order real polynomial. It is globally convergent and does

so very rapidly. The program is extremely well written and is

quite elaborate, to the point of compensating for specific machine

accuracy limitations.

The Jenkins (1975) program factors the H(z) numerator polynomial

and returns the real and imaginary portions of the roots of H(z).

The complex roots will always appear in one of two possible ways.

A set of roots may appear as complex conjugate pairs (quadratic

V.

,e: . icr;: A
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factors), each with a magnitude of one corresponding to the Izi = 1

unit circle. These roots will always correspond to the stopband

zeros of a filter design. Another form in which they may appear is

as a set of two complex conjugate pairs arranged symmetrically about

the unit circle so as to satisfy the condition that:

z, z2* = 1 (2.5)

These zeros correspond to the passband zeros of the filter. A diagram

best illustrates these concepts (see Figure 1). Real roots may occur

on the unit circle or in a manner similar to the passband zero case.

Summarizing the above, zeros of H(z) will occur as first, second and

fourth order factors.

Selection of Zeros and Subsequent Reconstitution

Once the zeros of the transfer function have been determined,

they must be separated into sub-groups and recombined. A simple

algorithm which generates all possible combinations of N roots taken

K at a time is used to separate the roots and form the sub-groups.

A polynomial is constructed from each group by multiplying the roots

within its group and the split design is rated as to the

desirability of the design.

The criteria used in the selection process employed here seeks

to maximize the average tap or coefficient value, while minimizing

the range and variance of those same values. These qualities are

-4
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desirable in SAW devices since we usually desire a maximum finger

overlap and want to avoid, as much as possible, large numbers of

very small tap weights which may increase diffraction effects. In

the case of digital filters, these problems translate to finite word

length problems and device dynamic range.

In order to evaluate the relative merits of one combination

over another, the following figure of merit is proposed:

Design FOM X ~ (2.6)

where:

x = average of the tap weights of both transducers combined

x= the range of the coefficients

ax= the variance of the coefficients

The ratio yields a figure of merit used to rate a given design.

Obviously, this concept could be extended to more than two

sub-transfer functions for the digital filter case.

This thesis proposes to study low order filters using this

separation/reconstitution technique and to apply detected trends, if

any, in a general sense.



CHAPTER III

FIR FILTER DESIGN

An excellent review of finite impulse response filter theory

is presented by Lawrence R. Rabiner and Bernard Gold (1975) and by

Rabiner, McClellan and Parks (1975). This review provides a

theoretical background for implementing the Weighted Chebyshev

Approximation filter design technique via the Remez Exchange

Algorithm (Remez 1957). That presentation draws upon the work of

Parks and McClellan (1973), who devised a general computer program

incorporating the above. Their program was used in this thesis

to provide the FIR transfer functions. An overview of the theory

leading from FIR theory to a brief program description is

presented. The following is adopted from Rabiner and Gold (1975).

FIR Filter Frequency Response Overview

A finite impulse response describes a system which can be

modeled by a difference equation in the form:

M b
y(n) = r (a-) x(n - r) (3.1)

r=O 0

Since the system output is the convolution of the system input,

x(n), with the system impulse response, h(n), the impulse response

can be readily seen to be:

9
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bn

-- , n =0, 1, 2, ...,M

h(n) = ao (3.2)

0, otherwise

The above equation describes the discrete time domain coefficients of

the system FIR. This same response may be described in the frequency

domain by taking the Fourier transform of h(n) to obtain H(eJw):

o

H(ej W) = E h(k) e-jwk (3.3)

Since h(n) is finite in length with respect to time, H(ejw) must be

infinite with respect to frequency. However, for discrete, sampled

systems, H(ejw) is periodic with respect to the sampling frequency,

i.e.,:

H(ejw) = HieJ(w+2rm )] im = 0, +1, +2, ... (3.4)

which is periodic in frequency with a period of 2w. This fact

allows us to restrict our requirement to define H(ejw) in practical

filtering applications in terms of the sampling frequency, consisting

of N samples over a period equaling the length of the time domain

impulse response (without any augmenting zeros). It also allows us

to state that:

N-i

H(ejw) N 1 h(k) e jwk (3.5)
k=O
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The function, H(eJW), can be described in terms of its magnitude

and phase as:

H(eJW) = + IH(eJw)l ejO(w) (3.6)

or

H(ejw) = H (ejw) eje (w) (3.7)

where:

H (eJw) = a real function

e(w) = constrained to describe a linear phase characteristic,
i.e.,:

0(w)= -aw -rr < r (3.8)

with constant phase delay implied by the constant, - a. The function

can be written in trigonometric form as:

_. IH(eJw')I {cos (oa) - j sin (ow)} (3.9)

In order to find a, equate the real and imaginary parts. Then, we

may describe cos (cu) and sin (ca) as:

N-1
_. IH(eJw)l cos (aw) = Z h(n) cos (wn) (3.10)

n=0

and

V.

I-

S.

* V... * ~ ... V V*~-
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N-I
+ IH(eJw)l sin (ow) E h(n) sin (wn) (3.11)

n=O

and set up the ratio:

N-I
E h(n) sin (wn)

sin = tan () n=O (3.12)Csa)N-I

E h(n) cos (wn)
n=O

Cross multiplying:

N-I N-I
E h(n) sin (cw) cos (nw) - E h(n) cos (aw) sin (nw) = 0

n=O n=O
(3.13)

Using the trig identity:

sin (u-v) = (sin u)(cos v) - (cos u)(sin v) (3.14)

yields:

N-i
Z h(n) sinf(c-n)w]= 0 (3.15)
n=O

Equation (3.15) is in the form of a Fourier series. For equation

(3.15) to be valid for an odd symmetrical series (see Figure 2),

a and h(n) must be:

N-i (3.16)
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and:

h(n) = h(N-1-n) 0 < n < N-1 (3.17)

In the case of an even, symmetrical series (see Figure 3), a will not

be an integer. The use of the fractional delay obtained here is of

primary significance when designing differentiators and Hilbert

transformers. These are not discussed here, but the reader is

referred to Rabiner and Gold (1975) for an in-depth discussion.

These values for a and h(n) hold for constant group delay and constant

phase filters. If constant phase delay (phase divided by frequency)

is not required, i.e., :

H(ejw) = + IH(eJ) I ej w(i - t) = + IH(eJw)I e -  (3.18)

where the phase delay is given by - I + a, then similar development

W
(Rabiner and Gold 1975) for an odd, anti-symmetric series (see

Figure 4) will lead to the result that:

N-i (3.19a)

iT (3.19b)

and

h(n) = -h(N-1-n) 0 < n < N-1 (3.19c)
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Again, the case of an even, anti-symmetric series (see Figure 5) is

of primary interest in designing differentiators and Hilbert

transformers. Equations (3.16) through (3.19) suggest four general

classes that might characterize a linear phase finite impulse

response filter:

1. Symmetrical impulse response, N odd

2. Symmetrical impulse response, N even

3. Anti-symmetrical impulse response, N odd

4. Anti-symmetrical impulse response, N even

It is now possible to describe H(ejw) to account for these

possibilities in the general relationship:

.1W

H(ej ) = H(ejw) ej (B -aw)  (3.20)

Rabiner and Gold (1975) next develop equations to define H(ejW)

in terms of H(eJw) for each of the above cases. The results of these

developments are summarized as follows:

Case 1: Symmetrical impulse response, N odd

^ W (N-1)/2
H(ej") = E a(n) cos (wn) (3.21)

n=O

with

a(O) = h[(N-1)/2], and

a(n) = 2h[t2i) - n] for n = 1, 2, , (N-1)/2

-I
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which yields:

HleJw) =eJw(N-l)/2 (N-1)/2

= a(n) cos (wn) (3.23)
n=O

Case 2: Symmetrical impulse response, N even

j = N12
H(ejW) E b(n) cos [w(n-0.5)] (3.24)

n=1

with

b(n) = 2h(N/2 - n), n = 1, 2, ..., N/2 (3.25)

H(eJw) e-Jw(N-1)/2 N/2

= b(n) cos [w(n-0.5)] (3.26)
n=1

Case 3: Anti-symmetrical impulse response, N odd

j (N-1)/2
H(ej) = c(n) sin (wn) (3.27)

n=1

with

c(n) = 2h[(N-1)/2 - n], n = 1, 2, ..., (N-1)/2 (3.28)

H~eJ) eJw(N-l)/2 ej-f/2 (N-1)/2

H(eJw) = e- e E c(n) sin (wn) (3.29)
n=1

*L~ ~ ** %v ~ I ~ ~ V*~%*~~~*. ~ .q.~~'~/



20

Case 4: Anti-symmetrical impulse response, N even

N/2
H(ejW) = z d(n) sin [w(n-0.5)] (3.30)

n=1

with

d(n) = 2h(N/2 - n), n = 1, 2, ..., N/2 (3.31)

H~eJ) e_ (N~)/2 j /2N/2

H(ejw) = ejw(N1)/2 ej'r/2 E d(n) sin [w(n-0.5)] (3.32)
n=1

Weighted Chebyshev Approximation

The frequency response of the desired system is completely

described by H(eJw). From the development in the first section of

this chapter, it is obvious that this description for each case can

be considered as a series of sine or cosine functions. These series

can be easily related to Chebyshev polynomials.

The Chebyshev polynomial represents an expansion of cos (mu) for

any value of m. We know that any real function can be represented

as a sum of sinusoids. These sinusoids are of the form cos (mu),

with m indicating the highest harmonic required to reconstruct the

original function. Of course, some functions require that m approach

0. Within given limits, however, it is possible to represent a

desired frequency response curve as a sum of Chebyshev polynomials

of finite length m. The Chebyshev polynomial expansions take the

following forms:

..................................
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m Cos mu (3.33)

0 1 = 1

1 CosU = Cos u

2 cos 2u = 2 cos2 u-i

3 cos 3u 4 cos3 u -3 cos u

Letting z = cos (u), or u = cos-1 (z), then:

Chebyshev

m cos mu Designation (3.34)

0 1 TO(Z)

1 z T1 (z)

2 2z2 - 1 T2(z)

3 4z3 - 3z T3(z)

A recursive relationship emerges:

Tm(z) = cos [m cos-1 (z)] X cos (mu), -1 < z < 1 (3.35)

In essence, we are using a sum of Chebyshev polynomials to

curve-fit to the desired frequency response from zero to one-half

the sampling frequency. Given the four cases discussed at the end

of the first section of this chapter, and using Chebyshev polynomials

to represent the eries, the problem defaults to determining the

" ]**I* -' * ,- : '.': .



22

scaling of the coefficients with respect to frequency. This process

is called "weighting" the approximation and is discussed in depth

by Rabiner and Gold (1975). It is reiterated here briefly.

For the four cases described in the first section of this

chapter, a general expression can be written to define H(ejW) as:

H(ejw) = e-jw(r11 l)/2 ej ( r/2)L H(eJw) (3.36)

The exponent L will take on a value of either 0 or 1, depending upon

the case considered. Now, a table can be constructed which shows

values for L and the form of H(eJw) for the appropriate case of

symmetry and N (see Table 1). The previous discussion of the form

of the Chebyshev polynomial would suggest that the expressions for

H(eJw ) may be converted to summations involving cosines (as opposed

to sines) using ordinary trigonometric identities. Once this is

done, Table I can be rewritten in terms of functions which are fixed

functions of w, which will be referred to as Q(eJw), and as

functions of the cosine series, which will be referred to as P(ej )

(see Table 2). For cases 2 through 4, Q(ejw) is constrained to be

zero at either w = 0 or w = 7, or both.

Now, it is possible to set up a relationship between the

desired response at given frequencies to within a prescribed accuracy.

To do so, let D(ej) represent the desired response of the filter

and let W(ejw) represent the weighting on the allowable error as a

function of frequency regions or bands (i.e., the ratio of the

J ',,', .,, -. N " " , ," -' ' , " -" " , 
W '
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stopband ripple to the passband ripple). With these functions, the

error for a given approximation can be calculated as:

E(ej) = W(ejw) [D(ejw) - H(eJw)] (3.37)

with H(ejw) being the trial design. H(ejw) can be separated into its

two symbolic parts to yield:

E(ejw) = W(ejw) ID(ejw) - P(ejW) Q(eJW)] (3.38)

Q(ejw) may be factored out of the quantity in parentheses since it is

a fixed function of frequency. This yields:

E(ejw) = W(ejw) Q(ejw) [D(eJw)/Q(ejw) - P(eJw)] (3.39)

Defining [W(ejw ) Q(eJw)] as W(ejw), and [D(eJw)/Q(eJw)] as D(eJw),

equation (3.39) may be rewritten as:

E(ej W) = W(eJw) [D(eJw) - P(eJw)] (3.40)

The problem now defaults to finding the values for the coefficients

of the Chebyshev polynomials [P(eJw)] such that the maximum error

over each specified frequency band is minimized. To accomplish this,

the Alternation Theorem is used. It states (Rabiner and Gold 1975):

Theorem: If P(ejw) is a linear combination of r cosine
functions, i.e.,:

~r- 1

P(ejw) = r z1 (n) cos (nw) (3.41)
n=O

*, %' ' %* *.o . * .* . , * , " " . . ". "...% " ,
,
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then a necessary and sufficient condition that P(ejw) be the unique,

best weighted Chebyshev approximation to a continuous function D(eJW)

on A, a compact subset of (0,7T), is that the weighted error function

E(ej ) exhibit at least (r+1) extremal frequencies in A; i.e., there

must exist (r+1) points wi in A such that w, < u2 < ""<wr+1 and

such that E(e j i) = -E(eJ Wi+l), i = 1, 2, ..., r, and IE(eJ Wi)I =

max [E(eJW)] for all w in A.

Rabiner and Gold (1975) show that for the four cases of filter

design presented, that the number of extremal frequencies in H(ejw)

obey the following constraints:

Case 1: Ne - (N+I)/2

Case 2: Ne N/2 (3.42)

Case 3: Ne (N-1)/2

Case 4: Ne : N/2

The extremal frequencies, or extrema, are divided up between the stop

and passbands of the filter and they describe the peaks and troughs

of the Chebyshev approximation. A diagram best describes the

relationship of the extremal frequencies and the shape of the

Chebyshev approximation waveform (see Figure 6).

There are several ways in which to obtain the extremal

frequencies of H(eJw). The first method, described briefly, was

originally proposed by Herrmann and Schuessler. The method

capitalizes on the fact that a local maxima (+6) or a local minima

. .
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(-6) occurs in the region of an extrema, and that the derivative

is zero at that point. Two equations in Ne with two Ne unknowns

(Ne impulse response coefficients and Ne frequencies where H(ejW)

obtains an extremal value) are:

H(e - - + D(e i= 1, 2, .. Ne (3.43)
W(e )

and

d H(ejw)l= 0 i = 1, 2, ... 9 N (3.44)
dwe

W =i

where E(eJI) = +_6, and these are solved iteratively for values of

Ne. This procedure works well for filters with an order about 60

or less.

Another method used is one devised by Hofstetter, Oppenheim and

Siegel which is called the Polynomial Interpolation Solution by

Rabiner and Gold (1975). The basic idea behind this algorithm is

that an initial guess of the extremal frequencies is made and H(e

is evaluated at these points. The algorithm then searches for the

actual extrema found during that trial and iterates again, this '.

time using the newly found extrema. Eventually, the process converges

to the minimum ripple attainable for a given Ne. Very large order

filters can be designed by this method. The Polynomial Interpolation

Solution technique is very similar to the last technique to be

described, the Remez Exchange Algorithm.

" .,.,,. ,. ,, ',t 1, ,,' ., -,,,,,,..".. ,r." , .. ,-.. . ,,, .---,. .',-.-", t ., ,"'"",-..- .,-". . -" ". -"- ."€., , . " ' '', -'-" w '-. '- . -. . . - - - , - , - •- ,-. ,- . . • -,, .. U- ,
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The Remez Exchange Algorithm

We have seen that the goal of obtaining the desired response

D(ejw) is met by obtaining the approximating function P(ejw) which

best minimizes the weighted error function E(eJw). The Remez

Exchange Algorithm accomplishes this by using a dense grid of

frequency points to find the extremal frequencies. An initial

guess as to the location of the (r+1) frequencies is made, similar

to the Polynomial Interpolation Solution method. Then, the error

function is forced to have a value of + 6. The signs alternate,

since the extrema are expected to alternate above and below the

indicated level by 6 in the final design. These constraints

generate the separate error function [E(eJw)] equation for each

extremal frequency, given from equation (3.40) as:

AJwk Jw .Jk k
W(e ) [D(e ) - e = ( 6 k = 0, 1, .... r (3.45)

which generates an (r+1) x (r+1) matrix of equations to solve.

Remez (1957) found an alternative closed-form solution (appropriately

modified for the current variable set) to be:

aJe0  l)De eA r)J o^ 
^W j 1j r

aoD(e ) + a )D(e + ... + arD(= ^JWo ^j1 ^ + +_,rJWr

ao/W(e 0) - a1/W(e (-)r ar/W(e

where:

r
ak = 11 (3.47)

i=0 (Xk 'x)
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and

xi - cos Wi (3.48)

At this point, the optimum 6 for a given set of extremal

frequencies is known. The next step is to form the approximating

function P(ejw) along the r extrema points by using the barycentric

form of the Lagrange interpolation formula:

r-1 ak
7. (- -x.,) Ck

P~ejw) = k=0 k (3.49)r-1 ak
I. (

k=O -IXk

where:

.k  1 (3.50)

* i=O (Xk- x i

ifk

and

Ck= D(e)- (-I) k Jw k =0, 1, r-1 (3.51)i" J•

* W(e

Xi = Cos wi

. Xk = cos Wk (3.52)

x = Cos W

I
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Once the approximating function P(ejw) has been formed, it is

possible to evaluate E(ejw) along a dense set of frequencies which

are equally spaced along the frequency axis from zero to one-half

the sample frequency. If:

E(eJW) <6 (3.53)

then an optimal approximation to the desired frequency response has

been found. If the weighted error function exceeds 6, then a new

set of (r+1) extremal frequencies is chosen by selecting the peaks

of the error curve. This process quickly forces 6 to converge to

its maximum value for a given number of extremal frequencies. If

there are more than (r+1) extrema in E(eJw), then the new number of

extrema is retained and used in the next iteration of the process.

The final impulse response coefficients are obtained by

performing a 2M point Inverse Discrete Fourier Transform on P(eJw).

where 2M > N. Note that this N is the filter order plus 1.



CHAPTER IV

ZERO EXTRACTION TECHNIQUES

The problem of extracting the zeros of a polynomial turns out

to be far from simple, sparking the interest of mathematicians

and scientists for centuries. With the advent of the digital

computer, the factoring of high order polynomials has become

possible, though not entirely without grief. Some of the more

prominent approaches and associated problems are briefly discussed

here.

Polynomial Theory

A polynomial in z is an equation which takes the form:

aNzN + aN-izN-1 + ... + a2 z2 + a1z + a0  (4.1)

or, alternatively,

N
E anzn (4.2)
n=O

where the coefficients aNo aN, ... , a0 are real numbered constants.

This form of equation is readily identified with the equation

describing the finite impulse response filter z-domain representation.

This polynomial can be expressed also as a product of its roots or

zeros as:

32
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N
IT (z -zn) (4.3)

n=1

Notice that for a polynomial with N roots, there are N product-form

terms and N+1 summation-form terms. This can cause some confusion

at times. For example, the McClellan, Parks and Rabiner (1973)

program discussed in the previous chapter displays a filter order of

N when, in fact, N coefficients are actually meant.

Zero Characteristics of FIR Filters

When described by a polynomial in the z = ejW plane, FIR filter

zeros plotted in the z-plane always have a distinct appearance.

All of the stopband zeros will occur exactly on the unit circle

and will always occur as complex conjugate pairs, unless they are

real. The complex passband zeros will always occur in sets of

four, one inside the unit circle, another outside such that the

magnitude of one multiplied by the other will equal exactly one.

This pair also has corresponding complex conjugates, hence the set

of four.

Due to the nature of the Chebyshev polynomial approximation

of the FIR frequency response, there are no repeating zeros or

multiple roots to contend with. However, this does pose problems

in other factoring situations and is discussed briefly.

Factoring Methods

Several unique approaches to zero extraction exist. The first

was by none other than Sir Issac Newton (1642-1727). Since that
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time, other algorithms by Bairstow, Lin, Muller and Birge-Vieta

have arrived (Ralston and Wilf 1960). These algorithms have the

relative liability of not being able to assure convergence for any

initial guess of a root. Other methods which virtually assure

convergence within a class of problems are methods of Lehmer,

Graeffe and Bernoulli. The Bisection method is probably the most

crude method of root-finding, relying upon a purely iterative process

of testing discrete points in the z-plane until the roots are

found. The latter four cases have the disadvantage of slow

convergence. There exist several matrix-oriented computer program

packages, such as EISPACK (Smith et al. 1976), which are designed

to find the eigenvalues of a matrix, another means of finding the

zeros. However, these programs are extremely memory-inefficient.

The method adopted for this thesis project is the Jenkins and Traub

(1970) method which combines many of the above techniques, as well

as ones by Traub, into a very complex algorithm and computer program

which is convergent for a wide class of problems and is very

machine-efficient. Discussed briefly are the more prominent methods.

Newton's Method

The process of finding a root by Newton's method is perhaps

the best known and most easily understood (Blomquist 1968). It

is based on beginning with an initial guess for the root and

iteratively converging to the actual root with the method of steepest

descent. The following relationship describes the method:

4.; ,"W , " " t € ,, . - . . .
-
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Zn+ 1 = Zn - P(zn)/Pl(zn) (4.4)

where zn is the current guess of the root, P(zn) is the value of

the polynomial at z n , Pl(zn) is the value of the derivative of

P(Zn) and zn+ 1 is the next guess (or, eventually, the root). This

process may be carried out iteratively to any practical, desired

accuracy. The root is obtained when the difference between Zn+1

and zn is less than the required accuracy. Figure 7 graphically

shows how successive iterations ultimately converge to the root.

Problems with this technique occur since it has no direct way

of determining if a multiple root exists and the method does not

always converge to the root. An example of how the method may

fail is shown in Figure 8. This case demonstrates that choosing

an initial guess too far from the actual root may prevent convergence.

In this example, the method will oscillate between z1 and zo, since

each point represents the other's successive approximation. The

method also requires the use of complex arithmetic in evaluating

P(zn) and P1(zn) in the case of complex roots, which further limits

this method.

Bairstow's Method

Prior to the Jenkins and Traub (1970) approach, the Bairstow

method was regarded as one of the best techniques for extracting

zeros. The primary advantage which this method has over Newton's

Method is that it uses only real arithmetic to evaluate the

#
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polynomial. The basic idea is to use Newton's Method to find unique

quadratic factors to tthe polynomial using only real arithmetic,

remove the quadratic via synthetic division and use the well-known

quadratic formula to extract the complex roots of the quadratic

factor. This technique automatically locates multiple roots, since

it deflates the polynomial by an order of two for each quadratic

factor found.

Simons, Weeks and Kotick (1983) developed an elegant formulation

which best expresses Bairstow's Method. The algorithm begins with

a polynomial in the form of:

PN(Zn) = aNzN + aN-lzN-I + aN2z N-2 + .. + alzl + aZ0  (4.5)

Newton's Method is used to approach the root by using equation (4.4).

However, Bairstow's Method evaluates PN(z) and its derivative(s) at

the pair of complex points zn and zn* by using only real arithmetic

as follows:

N (
Let PN(z) = E an z (4.6)

n=O

Let the quadratic factor take the form:

2z 2+ az + B(4.7)

where:

a -2a

"., -
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and

8a= 2 + 2

Then, dividing PN(z) by this quadratic factor yields a polynomial

of order N-2 with a remainder Rlz + Ro, i.e.,

PN(Z) RlZ + R
= P.2(z) + 

(4.8)
z +Z+ z + Cz +

Multiplying both sides by the quadratic factor yields:

PN(z) = PN.2(z) (z2 + az + a) + R1z + R (4.9)

Obviously, if Rlz + Ro = 0, then the roots are:

+v 2
-2 a 0(4.10)

by the quadratic formula. Therefore, the problem defaults to choosing

values for a and 0 such that the remainder is zero. R1 and R can

be related to PN(z) by the following:

.I
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az N2+ (a N- l-caaN )z N-3[aN- 2czaN l+(a2+O)aN1z N-3 +.

z2 +cZ +8Ia Nz N+ aN-i EN-i + aN-2z N2+ a N-3 z N-3+

aN N + ctaNz N-i + Oa N N-2

(aN -cta N)z N1+(aN-2-aaN)z N-+a N 3z N-+...

(aN-1ctaN)z N-1i+(caN-ctaN)z N-2 +($a Ni1ct~aN)zN-3

IaN 2caN- +(ct -0aN]zN-

+(aN-3-Ra Nil+aaN)z N-3+..

(4.11)

Letting:

N-2 = N

bN-3 -aN-1 - a Nc' aN-1 - bN-2

(4.12)
bN-4 =aN- 2 - aNct aN-1 - aNc'

-aN-2 - bN-2 -bN- 3 t

a recursive relationship emerges:

bN~ Nf b~ xNf (4.13)

Iterating to n =N yields:
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bo = a2 - sb2 - b1

b_= a, - 6b, - cbo  (4.14)

b_2 =a o - abo0 - b-1

Since

R=z+R 0  b_ - +b 2  (4.15)
z2 + az + 1

then

R1z + Ro = (z2 + az +6) (b_ z- 1 + b_z- 2) (4.16)

= b ctb_2 5b_ I ab-2 (.7= b 1z + b_2 + ab 1 + 2 " + (4.17)- + - +
z

Equating like coefficients:

R1 =b_

Ro = b2 + (xb_ 1

(4.18)
= ao  -b- 1 + ab-l1

= ao - Sbo

The polynomial PN(z) and its derivative(s) may now be evaluated at

any pair of complex conjugate points specified by the chosen quadratic
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factor. Newton's Method now follows easily, unless PN (z) evaluates

to zero. If this is the case, multiple roots exist for the chosen

pair, a + jw. In this case:

PN W (4.19)

PN I(z)

is replaced by successive derivatives

PNM(z)
PN~'(z)(4.20)

until PNM+1 (zn) # 0. Now the root, as well as its multiplicity, is

known.

The final step of the process is to remove each quadratic factor

from the polynomial (polynomial deflation) using synthetic division.

Bairstow's Method is again applied to the resulting polynomial until

all of the roots are found.

The disadvantage of Bairstow's Method lies in the necessity

to make a reasonably accurate guess of the quadratic factor. A bad

guess can prevent convergence in the same manner as happens in

Newton's Method. Both of the above processes suffer from machine

rounding problems which occur with successive deflation of the

original, high ordered polynomial.

4.
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Jenkins and Traub Method

This is a highly complex method which attempts to incorporate

all of the above advantages while avoiding the mentioned pitfalls.

The program incorporating the algorithm was the subject of Jenkins'

doctoral dissertation (Jenkins 1975). The process incorporates

three stages of zero extraction using Bairstow's Method, Newton's

Method and three shifting techniques used to hasten convergence.

The method assures rapid convergence for a wide class of polynomials.

Zeros are removed in roughly increasing order of modulus; i.e., the

zeros closest to the origin are generally removed first, the ones

furthest from the origin are removed last. This is done in order

to reduce the instability problems which may accompany the deflation

process. A discussion of the variable shift algorithm is beyond the

scope of this thesis and the reader is referred to the Jenkins and

Traub (1970) paper for a formal theoretical treatment.

One of the interesting aspects addressed by Jenkins in writing

the program is that it takes into account the specific capabilities

and limitations of floating point manipulations on a given machine.

This feature allows the program to be customized to a specific machine

in order to achieve the highest possible zero extraction accuracy

for that machine (using the Jenkins and Traub algorithm).

The program in Appendix B appears to be the current state-of-

the-art in non-matrix methods of polynomial factoring. For example,

the 1986 IMSL math libraries make use of this algorithm for their
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zero extraction approach. Schelin (1983) also indicated that this

was the prime non-matrix type algorithm as of 1982.

In practice, the program handles up to roughly an order of

one-hundred with little difficulty. Convergence problems begin to

occur with increasing frequency beyond this limit, based upon

actual tests.



CHAPTER IV

ZERO SEPARATION AND RECONSTITUTION

The prime reason for judicious zero separation is based on a

desire to increase the dynamic range of the transducer or DSP device

without sacrificing any of its transfer characteristics. The

dynamic range is largely affected by relalively small FIR

coefficients. These small coefficients correspond to small area

overlaps of fingers in SAW devices and to small register coefficients

in DSP filters. The net effect in the SAW device is for the small

overlap to appear more like a point source wave generator as opposed

to a desired planar wave source. Second order effects also begin to

become more predominant for this situation. Similarly, DSP filters

suffer from rounding effects when forced to sum products of very

large and very small filter coefficients, even when floating-point

arithmetic is used. The following DSP example demonstrates this

problem.

1. Let the internal number representation be from - 1.00 to
1.00.

2. Let the system function be:

y(n) = (1.00) x(n) + (0.02) x(n-1)

which is an FIR filter with coefficients 1.00 and 0.02.

45

-'-';P',' ,Zr "~~~~~~.......vZ..'...'-" . . o...-.. -- ,-'..........................



46

3. Let x(0) = x(1) = 0.20 and x(-1) = 0.0, then it follows
that:

y(0) = (1.00) (0.20) + (0.02) (0.00) = 0.20

y(1 = (1.00) (0.20) + (0.02) (0.20) = 0.204 (actual)

However, y(1) = 0.204 will be truncated to 0.20, since the internal

precision only allows two decimal places.

In practice, it may not be possible to completely avoid the

problems associated with dynamic range, but it is desirable to attain

the best dynamic range for a given design. The above example

demonstrates that three qualities of the FIR coefficients bear close

* scrutiny during the design process: the average, the variance and

the range of the coefficient values.

Statistical Qualities

The highest average value for the FIR coefficients provides the

* greatest average finger overlap on a SAW device. thus the highest

average energy injection into (or removal from) the substrate.

Similarly, the highest average coefficient value in a DSP filter

produces data with the highest average value within the register

working ranges. Since sign changes may be handled easily in either

44 type of device, the average is taken of the absolute value of the

FIR coefficients. The average is defined as:

N

n=1x N
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The variance of the FIR coefficients indicates how much they

change on the average. In other words, the variance indicates how

smooth the overall envelope is. Again, since sign changes may be

handled easily in either type of device, the variance is taken of

the absolute value of the FIR coefficients. The variance is defined

as:

N N
AN x Z Ih(n)] 2 - { J Ih(n)1} 2

a2  n=1 (N-1) n=i (5.2)

The range of the coefficients is an absolute indication of now

far apart the minimum and maximum coefficient values are. Since the

coefficients are normally scaled to a maximum of 1.0, the range will

provide an indication of the minimum coefficient value. As in the

above two statistical qualities, the range is taken for the absolute

coefficient values. It is defined as:

A

Range = Ih(n)max - Ih(n)minl (5.3)

These three qualities allow the designer some means of rating one

given design against another quantitatively, leading to a design
Figure of Merit (FOM).

The Figure of Merit (FOM)

A design objective which requires the best split of the zeros

of the transfer function requires that the designer be able to rate
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one design over another until the best is found. This can be done

by assigning an FOM to the design based on the three statistical

qualities discussed above. The goal addressed here is to split the

zeros between two transducers or processors such that a gain in

available dynamic range is found. To do this, the following procedure

relating the combined transducer coefficient average, variance and

range values to a figure of merit is proposed:

1. Normalize all hl(n) coefficients to 1.0 maximum.

2. Normalize all h2(n) coefficients to 1.0 maximum.

*(NOTE: For the special case where all of the FIR
coefficients are implemented by h (n), then
h2(n) is set to 1 to represent thi impulse
function since the convolution of the impulse
response with an impulse is the impulse
response.)

3. Form an array consisting of I hj(n)f

4. Concatenate the 1h 2(n)I values to this array.

5. Find the average (7), variance (a2) and range of
the newly-formed array.

6. Apply the relation:

FOM = ~------(5.4)
a .Range

This equation reflects a desire to maximize the average while

minimizing the variance and range of the coefficient values. it

provides the designer with a means of rating one set of split zeros
versus another.
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Splitting the Zeros

In order to determine if an optimum zero-splitting pattern

might exist, all possible combinations for distributing the zeros

must be made and each combination tested using the FOM procedure.

This process is very tedious but may be readily implemented on a

computer due to the iterative nature of the process. Since

there are:

N/2 N!
E K! (N-K) r (5.5)K=O

total, non-repeating combinations, the process has a practical

computational upper limit of about FIR order N = 40 (which has over

1011 combinations) on a VAX 11-750. However, equations of low order

may be used to model any trends applicable to the higher order

cases encountered in SAW devices.

Computer Impl ementati on

Appendix C shows a listing of the program COMBO used to generate

(Beckenbach 1964) and rate all of the combinations of zeros provided

by the Jenkins (1975) program. These zeros are the result of

factoring the frequency response provided by the McClellan, Parks

and Rabiner (1973) program.

COMBO first generates an array consisting of all of the zeros

do (complex conjugate pairs or reals) to be placed in Hl(z), while all

others are assumed to be placed in H2(z). The program insures that
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for responses which contain five real zeros, a sufficient number of

combinations occur. Once a combination has been specified, program

control is passed to the zero reconstitution subroutine.

The reconstitution subroutine POLYRECON is responsible for

multiplying the appropriate zeros together to form a test case

H1(z) and H2 (z). This algorithm uses either a real root to form

a linear factor or a complex conjugate pair to form a quadratic

factor. All arithmetic performed is real. The H1(z) and H2(z)

arrays are readily converted to scaled h1(n) and h2(n) arrays.

The arrays are combined as described in the FOM procedure, the statis-

tics are performed by the HSTAT subroutine and an FOM is assigned.

Next, the FOM is compared to the FOM of the previous design and

a decision is made as to which is best. If the new design is best,

those results are stored and the program proceeds to iterate again.

Upon completion, the results are passed back to the calling routine

for further analysis.

S.



CHAPTER VI

COMPUTER AIDED DESIGN APPLICATION

The Solid State Devices Lab group at the University of Central

Florida, headed by Dr. Donald Malocha, uses a computer analysis

system called SAWCAD, developed at UCF, to design SAW filter

devices. Added to this program are the McClellan, Parks and

Rabiner (1973) (Remez) program, the Jenkins (1975) zero location

program and the Optimizing program discussed in Chapter V. The

following is a brief discussion of the use of the added features

to SAWCAD. The complete SAWCAD package is not discussed here.

Further information on other aspects of SAWCAD can be obtained by

referring to Richie (1983).

A listing of the main menu is shown in Figure 9. A filter

design is initiated by selecting the (C)hebyshev [REMEZ] option to

the main menu. The program proceeds to the McClellan, Parks and

Rabiner (1973) program which has been somewhat modified. The

data entry routine consists of an interactive session between the

computer and the designer. During this session, the designer is

asked to specify the filter type (i.e., bandpass, differentiator

or Hilbert transformer), the number of distinct frequency bands up

to f sample/2, the start and stop frequencies of each band, the

maximum dB level- in each band and the maximum allowable ripple in

the primary passband (multiple passband designs are possible).
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Once frequency range, function and amplitude information is

entered, the program makes an initial guess of the required filter

order and initiates a design. If the design fails to converge to

the required specifications, the filter order is increased and the

process is repeated until convergence is obtained. Once a valid

design is found, the design report is printed and control is passed

back to the SAWCAD main menu.

At this point, the impulse response coefficients exist in

memory only. The SAWCAD (W)rite function is selected and a disk

file containing the impulse response coefficients may be written.

This step is highly recommended. Control passes back to the SAWCAD

main menu.

Any number of options are now open to the designer. The

obtained response could be used immediately with other SAWCAD

functions if desired (i.e., FFT, Graphics analysis, etc.). The

next option we shall concern ourselves with here is the (Z)ero

Extraction option. Selecting this option requires no further

input, since the program calls the Jenkins and Traub program to

factor the z-transform of the impulse response. The program

returns the zeros and places them in the amp and phase variables

of the SAWCAD program. The designer must be aware that the impulse

response is no longer in memory!

Next, the optimum split for low order designs can be found

using the (S)plit Transducers selection on the SAWCAD main menu.
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No further user input is required since the program iterates until

the best split design is found. Once found, the program prompts

the user for transducer 1 and 2 file names under which to save the

impulse response coefficients.

Generation of the design is now complete. It may be checked

by multiplying the transducer 1 and 2 data files together and

comparing the product with the original response generated by the

Remez method. These comparisons may be done graphically using the

powerful graphics and FFT facilities of the SAWCAD environment.

A.

A.

1



CHAPTER VII

RESULTS

In an attempt to determine a general algorithm applicable to

filters of any order or type, eight different low-order test filters

were designed. Four of the filters were low pass designs and four

were high pass. The input design specs appear in Table 3.

The designs were made using the Remez technique, factored by

the Jenkins (1975) program, and were subjected to the optimizing

program to test all possible split designs. The composition of each

transducer was recorded to reflect the number of stopband and passband

zeros, and whether these zeros were real or complex. These results

are tabulated in Table 4.

Careful study of the results does not indicate any clearly

emerging pattern. In three out of four of the cases with very

narrow passbands (LP1, HP1 and HP4), the passband zeros all appeared

on one transducer accompanied by several stopband zeros. However,

LP4 passband zeros were split between the two transducers. The

other cases did not produce results which might indicate a

predictable pattern.

Another test was devised to test and rate a conventional

no-split design, a strictly passband-stopband split, the "alternating

zero" algorithm employed by other design groups (Morimoto et al.
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1980 and Ruppel et al. 1984), and the split algorithm presented

here. The HP1 filter spec was arbitrarily chosen as the subject of

the test. Figure 10 shows the overall frequency response of the

HP1 filter.

The conventional no-split design yielded a figure of merit

(FOM) of about 2.5214, whereas the passband-stopband split (i.e.,

all passband zeros on one transducer and all stopband zeros on the

other) yielded an FOM of about 3.588. Figures 11 and 12 show the

frequency response of each transducer. The passband transducer

shows nearly unity gain at 0 with a gradual rolloff in the region

of f09 a very difficult response to implement on a SAW device.

The "alternating zero" approach yielded a FOM of about 6.5756.

This shows an improvement in the quality of the design as compared

to the passband-stopband split method. Figures 13 and 14 show the

frequency response of each transducer. The zeros are clearly

orthogonal. Figures 15 and 16 show the impulse response represen-

tations. This design does appear to have merit in the case where

a fifty-fifty split is highly desired.

The technique presented here produced a design with a FOM of

about 9.753. Figures 17 and 18 show the frequency response of each

transducer and figures 19 and 20 show the corresponding impulse

response plots.

The last two designs do not appear to pose fabrication problems

which might plague the passband-stopband split design case. As a

4
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check of the split, the frequency responses of the last design were

multiplied together via SAWCAD and replotted. That plot is exactly

the same as the original frequency response in Figure 10, as

expected.
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CHAPTER VIII

CONCLUSIONS

The technique presented in this thesis of optimally splitting

the zeros of the transfer function shows considerable immediate

promise for low order (N less than 40) filter designs. An algorithm

permitting the split design of high order filters has not become

readily apparent, although the presented "all-combinations" technique

may still be used if limits are placed upon the transducer sizes.

For example, specifying a fifty-fifty split design significantly

reduces the number of combinations which must be tested. Future

efforts in this area must focus upon a more efficient search criteria

or be content to accept less than optimal results, as in the

"1alternating zero" approach. The concepts presented here may be

extended to generate multi-transducer splits, with primary utility

in large ordered digital filter implementations.

In spite of the limitations of the technique used here, it is

obvious that a "best split" design of an FIR filter transfer

function exists based upon the average size, variance and range of

the resulting impulse response coefficients. The "alternating zero"

split approach (Morimoto et al. 1980 and Ruppel et al. 1984), the

only other method published to date, exhibited a lower FOM when

compared to the split found by testing all possible combinations,

based upon the stated criteria. Careful study of figures 15, 16, 19

71
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and 20 (shown in Chapter VII) demonstrates that the presented

technique does, indeed, produce larger tap sizes for a given transfer

function than the "alternating zero" approach. Therefore, for

critical, low-ordered design cases, the technique presented here

will provide best results.

The Jenkins and Traub factoring algorithm is a very accurate

means of obtaining the zeros of polynomials within an order of one-

hundred or so. However, high ordered SAW filter designs will require

that the zeros of polynomials of a thousand order, or more, will need

to be extracted. Based upon observation of the programs and

polynomial characteristics encountered in this thesis, several

alternative approaches to locating the zeros seem feasible.

One technique that merits further investigation is the use of

the Fourier transform to expose the stopband zero locations. This

can be done by noting where the stopband nulls occur and reference

these points to the corresponding angles about the z-plane unit

circle. The cosines and sines of these angles are the real and

imaginary components of the stopband zeros which, of course, have

corresponding complex conjugates in the lower half of the unit circle.

Once all of the stopband zeros have been found, the z-polynomial may

be deflated in one step, yielding a polynomial consisting of only

the passband zeros. Next, the Jenkins and Traub algorithm may be

applied to the greatly reduced polynomial to locate the passband

zeros. The Fourier transform technique could be applied to any FIR

obtained by any design technique.
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Another zero location technique which may be explored is unique

to the Parks and McClellan program. One of the outputs of the

program is a listing of all of the Chebyshev polynomial extremal

frequencies. Since the limits of each stopband are known (specified

apriori), and since the extremal frequencies are fairly evenly

spaced in the stopband, an interpolation between adjacent extremal

frequencies will provide a good approximation (or, at least a good

initial guess) to a function zero in the stopband. If the

interpolation method is deemed sufficient, then all of the zeros

found may be used to reduce the response down to a polynomial

containing only the passband zeros, to which the Jenkins and Traub

algorithm may be applied. A better approximation of the stopband

zeros would be obtained by applying the interpolation approximation

as an initial guess to Bairstow's technique to obtain the best

estimate of the zero. Again, the passband zeros could be found

using the Jenkins and Traub method.

In conclusion, an optimal split of zeros does exist, based upon

the stated criteria. The major limiting factor of the presented

technique is the requirement that all possible split combinations

must be devised and rated with respect to each other. This is a

very time-consuming process and future efforts may lead to a more

efficient means of finding the optimal combination. The use of more

powerful computing machines may make the split-design of somewhat

higher order filters practical, but a reasonable upper limit is

.4
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rapidly approached with each increase in filter order. Perhaps the

best tradeoff between this method and the "alternating zero" approach

is to obtain the best fifty-fifty split by trying all possible

combinations for this case only (i.e., N zeros taken N/2 at a time).

This approach will, at the very least, provide as good a design as

the "alternating zero" approach, without the serious high order

computational drawbacks of the method presented here. Additionally,

soime design consderations may favor a fifty-fifty split, as in the

case of two digital signal processors being required to evenly share

the processing tasks. Nevertheless, the purpose of this thesis was

to prove the existence of one such optimal combination, not the

optimal means of obtaining it. With a sigh of relief, and a hint

of moderate surprise, such proof has been presented.
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D~J E RZIES

C
C

C PRAM FOR 7HE DESIGN OF LINEAR PHASE FINITE IDMLSE
C RESPONSE (FIR) FILTES USING 7HE RENEZ E03CAGEA.WORrn'mH
C JIM MOCLEt, RICE UNIVlSITY, APRIL 13, 1973
C
C MI[IIED BY KEIIH V. LNDSAY, UNIVERSITY OF
C CENTRAL FLORIA, 1 MARCH 86, FOR USE WflH UCF' S
C SA(ffD PROGRAM.C
C THREE TPS OF FILTS ARE IN(LUDED--BANDPASS FILTERS
C DIFFERINTIMR, AND HILBERT NSERM FILTERS
C
C 7HE INPUT rATA CONSISTS OF 5 SECTIONS
C
C SBCTION 1--FILTER LENG7H, TM OF FILTE, 1-MILTILE
C PASSBAND/SMEBAND, 2-DI TIATOR, 3-HUBERT TRAISm
C FILER, NkUER OF BANrS, CARD PUIH EESIRED, AND GRIDC ID4SIT!
C
C SECTION 2--BANIEMGES, IW ADUP EDGES FOR EACH
BAND
C WITH A MAXIJM OF 10 BAMW.
C
C SECTION 3--DESIRED FUNCTION (OR IESIRED SLOE IF A
C DIF NTEA!n ) FOR EACH BAND.
C
C SECTION 4--WEIGHT PUNCTION IN EACH BAND. FOR A
C DIFFER 7E WEIGT EUNCTION IS INVERSELY
c PM'IctIAL IO F
C

(a2INK FILE/ AMP(4096) ,PASE(4096) ,!,ITYFOONKW.T/ F0, TfO, HI, Num

P12,AD, DEV, X, Y, GRID, ,rWT, ALPHA, IEXT, NFCNS, WRMDIIMENSION IE (514) ,AD(514) ,ALPHA(514) ,X(514) ,Y(514)
DIMENSION H(514)
DIMISIQI DES(8224) ,GRID(8224) ,WT(8224)DIMESION EDGE(20) ,PX(10) ,WTX(10) ,IIAT(10)
DOUBLE PRECISION PI2,PI
IXDBLE PRECISION AD,MV, X,Y
DOULE FRBIOIC HE
LOGICAL FAIL, MDRE2I
INTEGR iB, SB
P12-6.283185307179586
PI-3.141592653589793

C
C 7HE PROGRAM IS SET UP FOR A MRXIUN L~bG7H OF 1024, BUT
C 7IIS UPPER LIMIT CAN BE (HANGED BY REIiESICNING TE
C ARRAYS IEX, AD, ALPHA, X, Y, H TO BE NDAX/2+2.
C THE ARRAYS DES, GRID, AND WT MST BE DI1 SIONED
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C 16(NEMAX/2+2).
C

NFMAX-1024
100 C4TINE

JTYPE-0
C
C RGRAM INPUT SECTION
C

PRINT' *' MGITAL FILTER DESIGN (FIR) VIA THE
1 REE E93iANE AWfIOL'
PRINT *,' 1
PRINT *, 'ENTER TYPE OF FILTER:'
PRINT *,' (1) -'JLTIPLE PASSBAND/SME0AND'PRITm* (2) -DIF 2 TmI XR
PRINT (3) -HILBERT ANSOM FILTER'

READ *, JTYPE
PRINT *,' 1
PRINT *, 'ENTER HE NUMBER OF BANDS
READ *, NBAS
PRINT*,IJ I

C PRIMT *, 'TU TH 'E IMPULSE RESPONSE (1=YES, 0=ND)'
C READ *,JPjN

JPJNBCI1
C PRINT *, 'EkNTR 'UE GRID MISITY'
C READ *, JpID

LGRID-16
IF (ANS. LE. 0) NBANDS-l

C GRID DENSITY IS ASSUMED TO BE 16 UNES SPECIFIED
OMIWISE.C

IF (IGRID.LE.0) IGRID46
DO 888 J-1,!8RUD
PRINT ,Y

PR.IN' *,BAND ,Jl :
PRINT *,' l= EGE:'
READ *, XE(2*J-1)

PRINT *,' UPPER EGE:'
RED *,EDGE(2*J)

888 COTINE
IF(JTYPE.ED.2) GO TO 890
PRINT Y1 I
PRINT *,'ENTI THE ESIR= FUNICtM OF EAN BAND'
PRINT * (mNOPRSS, 1-PRMAND)'
DO 889 J-1,mR4DS
PRiNT,'

READ *,FX(J)
889 CrNUE

GO TO 893
890 DO 892 J-1,NBANIS

p - 0 - 0* .- -; .;r. . :. ;4 : . ;:..: ;:? .:;;;,,,..,: ;r:,r:...-., .;,.- -:- ,".':,
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PRiIM *#, 'U THE SLOPE OF BAND ,J
READ *1 FX(J)

892 COTINUE
893 00NINUE

PRiINT * vI
PRINT *8 ENWTR THE MAX dB RIPPLE IN THE PASSBAND'
REND *1 W
DP.1O.MD** (DP/2O) -1.OBO
W-1.OED

DO 898 .).1,MANE6
PRIN *I'I
PRINT *, 'ENTER MIE MLXIUM d3 LLVE IN BAND ',
READ *1 WflC(J)
IF (WTfl(J) .EQ.O.OED) THEN~k

WT(J) =. OB

GO MI 898
EN4D IF

WflC(J) =(1O.OED** ((20.OED*ALcG1O(DP) -WEC(J) )/20.0WD))
IF (WI(J).L.1.OED) WIX(J)-1.OED
PRINT I, '&'IPmAN WEMDTDG -' ,WTX (J)

*2477 IF (DS.GT.WO/WflC(J)) THIEN

IF (J.EQ.1) TEN
* EJTAFEDE (3) -EDGE (2)

D D O [ 898

I JLT. Z6ANrS) THE
IF (DPA cX(J-1).EQrl0P) THffEN

VMAFwEVE(J*2-1) -EDE(J*2-2)
GO TO) 898

END IF
DELTAF-DE (J*2+1) -EDE (J*2)
GO mt 898

END IF
IF (J.N8AIS) THEN

DELTAFE (J*2-.1) -KE rx(J*2-.2)
ENIDIF

END IF
898 oVI'NUE

C TAR A GUESS PAT AN INITIAL VALUE ElOR NFILT
C BASED UPON VAIDhMMAN' S EMULJATION

NFIL~hwINT( (-1O.OED*At0lczuOP*D6) - 13.0WD) / (14.6W *

IF(WILT. GTe NINAX. CLNWILT. LT. 3) CALL ERO
IF (JTYPE. .0) CALL ERO
N31



IF (J'YPE. E. 1) 803-
NCDNF7LT/2
NMNFILT-2*NM
NK8NSNFIAV2
IF (NOD. EC.1 AD.N3..0) UN9-MmN~S9

C SEI! UP THfE MiSE GRID. MIE NUIMER OF K)TI IN 7IEE GRID
C IS (FILTR LENI3 ff + 1) fGRID MNSITY /2

GRID (1) =HXGE(1)
DELF-IZRID*NFQNS
EE~UO.5/DELF
IF (NEG. ED.0) GO TO 13 5

135 03NTI'UE
J-1

lBAZQDw1
140 FUPEME(I*1)
145 TEMP-GRID(J)

C CLCUIRTE THE IDESIRED YAGNlUM RESCUSE AND THE WEIGHT
C iUNKTIMCN TH E GRID

MES (J) -EFF (TEMP, FX, MDC IBAN, JTYPE)
WT(J) 4-TE (TDIP, FX, WD(, BN, JTYPE)

GRID J) -TDM~f 1
IF(GRID(J) .GT.RI P) GO MO 150
G0 TO 145

150 GRID(J-1) -FLIP
DW (J-1) -EWF (EOP, I'X, WflC, IBAND, JTYPE)
WT (J-1) -WATE (FLIP, FX, WMX IBMN, JTYFE)
IBAN-BANDI-1

IF(tRID.GT.MANrS) GO TO 160
GRID (J) -EDGE (L)
GO TD 140

WF(n.NLN ) GO TO 165
IF GRIDG(RMI) .GM. 0.5-OWL)) N3RID.4GRID-1

165 CONTINUE
C
C SEI! UP A NIW APPROKWIMATIO RX~BI WHICH IS BUIVEMT
C TO MIE GHIK3INAL PIWLEM

IF(NBG) 170,170,180
170 IF(O.B.1) GO M 200

.4 DO 175 Jm1,GaR
CHAWBDcfS(PIRID(J))

175 WT(J -WT(J) *CANGE
GO MO 200
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180 IF (NO.E. 1) G O i)190

DO 185 J.1,NMRID

DES(J) -DES (J) /CHANE
185 WJT(J) .W(J) *CHANE

GO TO 200
190 CO 195 J=1,WGRI

DES(W) -CE(J) /CHAGE
195 WI!(J) =%V(J) *CHANGE
c
C INITIAL GUESS EOR. TH MX1RDAL ER~umCE-BOUALLY
C SPACED ALOG ME GRID
C
200 UIP.FMAPT(N~lUD-1) /FLOMA (NKaS)

CO 210 J-1,N7<XS
210 m&X(J) =(J-) TEMIP-

IE(NFO4Si1) -NGRID

C CAIL THE REM1 EMMANE AWaOIEM T0 O M ME
APRCINTION
C PRCBLMI

CULL REM~ (EDGE, NBRNLS,14DREN)
IF 040RE.EQ..7RJE.) THEN

NFILT.NFIT144
GO M0 2126

ENDIF
IF (DEV/WfC(IB) .GT.IDP Cl D. EVfWfl() .GT. rS) THEN

NFILTILT~i
C PRIM *,1 11vaTmc lB =',]0V/W1X(ff),'PB='rPB
C RINT *, 'riIATICzK S -, ,V/WTfl(3) ,'S~w' ,S

GO M0 2126
ENDIF

C C~LAME ME INRILSE RESPOSE.

IF(k=) 300,300,320
300 INN(M..0) GO M0 310

CO 305 J-1,NA
305 H(J) .0.5*ALlB&(NZJ)

H(NFQ4S) -ALPHA(1
GO M0 350

310 H(1)uO.25*ALPHA(NFlNS)
CO 315 J-2,M1

4 315 H(J) .0.25* (ALlBA(M-J) +ALlBA(NFMSB'2-J))
H(NOS)u-0.5*ALPHA(1 40.25*ALPHA(2)
GO M0 350

320 IF(NM.0.0) GO M0 330

H(l) .0 .25*ALFBA(NR11)

-. -*~ * --- 0.25 . -. * *(N***
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DO 3 25 J-3 r NI

325 H(J) -0.25* (APHA(MJ -APANCNi3J
H(NFa4NS) -0 .5*ATLP(1) -O .25*ALFRA(3)
H (m) =0. 0
GO 'It 350

330 H (1) -0. 25*ALA (NFCNS)
DO 335 J-2,N1

335 H (J) -0.2 5* LALPHA(N2-J) -ALPHA(NFCNS842-X)
H(NFQ4S) -. 5*APHAWj(~ -O .25*ALPHA(2)

CSET] UP IMPULSE REPNWOLNMA ARRAY

C ARRAY IN4 VARIMLE AMP
C
350 DO 342 I=1,MNFNS

AMP(I) =H(I) /H(NFCNS)

IF(NHLG.E0) AMP(NFILT-I1) -H()/H(NFIS)

342 CONITIUE

C AMD SIWCAD PARANE'IM NORMALIZED TO 1 MHZ
C 2 Fo SAIILDG

NU?4-NF'ILT
NFFT.?WILT
ITYPE-1
FOKO .5
TFLO- (NFILT6-1) /2
iT!I- (NFILTI-1) /2

C
C PROGRAM4 CWTPT SECTI.

PRINT 360
360 F0RMA(//70(H*) //25, 'FINITE DlPULSE RE5POSE (FIR) '

1 25X, LINEAR PHASE DIGITAL FILTR ESN' /
2 25X,'REMM EKIIALE ALGORITHDM'/)
IF(JTR.I.1) PRiINT 365

365 FOWQT(25C,'BMEASS FILTm'/)
IF(JTP.E.2) PRINT 370

370 FORMAT(25C, 'DI VnAI')
iF(3TflE.EQ.3) PRIN 375

375 FOR4T (25X, 'ERTE TRIAM !D'/

PRINTr 378,NFILT
378 FONW(20X,'IFILTER LENGTH L ,3/)

PRINT 380
380 FUaMA(20X,s***** IMPULSE RSPOSE***t

Do 381 J-1,NFCNS

IF(NH..) RUNT! 382,J(3) ,K

381 COTINUE
382 FONWNI(20X, 'H(',13,') -',ELS.8,' - (,14, ) 1)
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383 i'QMAT(20X,'B(,I3,') - ',E15.8,'- -H(1,14,9'))

IF (N. E. 1. AD. M. . 1) PRINT 3 84, NZ
384 FONqA(20X, 'H(,13,') - 0.09)

DO 450 K=1,1NBMUE,4
KUPK+3
IF (KUP. GV. MAM~) KUP.-6A3r8
PRIMT 3 85,(U, J-K, KUP)

385 iON (/24X,4(VBAND' ,13,8X))
PRINT 390, (EDI;E(2*J-1) J-,KP

PRINT 395, CEIE(2*J) ,J-K,KJP)
395 FMMIA(2X, 'UPiH BAND EDE' ,5F15.9)

IF(JTYP.NE.2) PRINT 400,(FX(J) ,J-K,KLJP )
400 POPT2X, 'WIRE VALUE',2X,515.9)

IF(JTYE.iD.2) PRINT 405,(FX(J),1"K,RUP)
405 FUNW(2K, 1'SRE S1AP,2X, SF15.9)

PRINT 410,(WIX(J) ,J-K,KUP)
410 FORMAT(X, 1WEB.ING~' ,6X, SF15.9)

DO 420 J-KKUP
420 DEWIAT(J) -Es/Wfl(J)

PRINT 425, (DEVIAT(J , J-K,WKP)
425 FORMAT(2X, 'OVIATICNI,6X,5F15.9)

IF(JIYP.NE.1) GO M 450
DO 430 J=K,WUP

430 DEVIAT(J)=2o.O'AL=fl(DEVIAT(J))
PRINT 435, (DEVIAT(J) ,JK,KUlP)

435 FONWA(2K,'VIATIOtN IN IB',5F15.9)
450 CONINUE

PRINT 455, (GRID (IEXT (J) ) ,J-1, N)
455 FOR4T (/2X, I EKMEAL PRMUEIES UK(2, 5PI2.7))

PRINT 460
460 FOMA(/1X,70(1H*)/1I)
C

RETUIRN
ENqD

C

c function to calculate the desired magnitude response
c as a function of frequency.

* IF(3T!PE. E. 2) GO0 M1

1 FF-MFX(BND) TP
d DIDN

IC P=XIM TM
CEM

* l~FNMIGN WA!E (TEIP, FXWflC, IBMN, JTYPE)
C
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c function to calculate the weight function as a function
c of frequency.
c

DIMENSION FX(5) ,WTX(5)
IFCJTYPE..2) GO TO 1
WFMDWTV IBRWD)RETUR

1 IF(FX(IBAD).LT.0.0001) GO M 2
WLATB-WT (LAD) /TEPREFURN

2 WATDW-M(L(A(D)

c
c
c

SEEF4UTINE ERO
PRINT 1

1 FO T * ERROR IN INPT ITA **********')

cc
SUBROUTINE REM (E1GE, N6A W, MDRE1)

c this subroutine implements the remez exdhange a1gorithm
c for the weighted dcebyche approximation of a continuous
c function with a sun of osines, inputs to the
subroutine
c are a dense grid which replaces the frequency axis, the
c desired function on this grid. the weight function on
this
c grid, the number of cosines, and an initial guess of the
c extremal frequencies. the program minimizes the
chebyche7
" error by detemining the best location of the extremal
c frequencies (points of mamiuz error) and then
calculates
c the coefficients of the best approximation.

P12 ,AD, EV, X, Y, GRID,SWT, ALPHA, IE , NFOS, ICRIDDIMESION EDGE(20)
DIMENSI01N IE r(514) ,AD(514) ,ALFHA(514) ,X(514) ,Y(514)
DIMISION IES(8224) ,GRID(8224) ,WT(8224)
DIMENSION A(514) ,P(513) ,Q(513)
DOUBLE RKISION P12,IXM, DN I,DM P, Q
DOUBLE PRBCISIO1i AD,IEJ,X,Y
LOGICRL MOREN

C
C THE PROGRAM ALIES A WtIWUM NUMBEI OF ITERATIONS OP 25
C

J'Eo.FALSE.
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MAX-25

DEVIF-1 .0

100 ClWNDIUFE

IF (NI1.TER . MOM GO MIX 400
DO 110 J-11,M

2WGhmI(ijX(J))

110 X(W) -DP

DO 120 J-1,N
120 AD(J)-D(J,IUZ,JET)

IEuIEI0.0
rI3E.m0.0
K-1l
DO 130 J-1,M

* I~rDP-AD(J0 ODES U
ENi wE'I1UM*DPDIP

130 K-K
DV-rtNwVrD=

r~=DEV--*
K-NU
DO 140 J-1,M
LIERr(J)

* y(JU) -MEL(W 4ErD4P
140 K-K

IF(DEV.GEEML GO MD 150

150 DEVIiIZV

29-I (NE)

J-1
C

* C SEARCHE POR MIE EXMEML FREQUENCIES OF THEE BEST
c ApmaaWTImt
C
200 IF(J.EQ.MZ) TM-aWM

di IP(J.GLdgZ) GO M0 300
xaAmTJl
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IPImXT(J) +1

(NTW-NU

IF (L.GLNJP) GO MO 220

ERR. (ERR-C(L) ) WT(IJ

IFWTMP.LE.0.0) GO MO 220
ODNURR

210 L-I*1
IF(L.GLNJP) GO MO 215
ERR-GEE(L,NS)
ERR- (ERR-DES(LW ) MAT(W
DEMP-UTERR-oMp
IF(DTEMP.LE.O.O) GO MO 215

GO D 210

J=J+1
KLQf-Ti-1

GO MO 200
220 1,1*-i
225 hL-i

IF(LELN) GO TO 250
ERRGEEMC, M)
ERR- (ERR-ES(U) *WT(L)

IF(ITEMu...0.0) GO TO 230
IF(J(HKGE.LE.0) GO TO 225
GO TO 260

23 0 COlMPTERR
235 L-L-1-

IF(L.LE.flCq) GO TO 240
ERR.ECL,M!)
ERR- (ERR-DES W ) *AT(W

IFOYI'DP.LLO0.0) GO TO 240

GO TO 235
240 IMOO-IEXr(J)

IEXT WJ) =1*1
J-J+1
J(E1(R.CB-1
GO MO 200

250 IIEMr(J) +1
IWCHIGE. GT. 0) 0TM215

255 1r'I*1
IF(L.GE.XJP) GO MO 260
EffloGEEMC, IM)
ERR.l (ERRMS () *WT W
M~EMRRM-OMP
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IFWI'DI.LE.0.0) GO MI 255
COMUNERR
GO TO 210

260 EU3?I'(J)
J=J+1
GO M0 200

300 IF(J.GT.MZ) GO M0 320

L-0

310 IPW*
IF(L.GLNJP) GO M0 315

ERR- (EPRRDE'.(W ) *VT(W
rTErNUT ER-OOMP
IF(DTEMP.LE.0.0) GO Mt 310

JEmZ
GO M0 210

315 WOCK-6
GO Mt 325

320 IP(LEEL.GT.9) GD M0 350
IF(004P. GT. Y1) Yl-OWP

325 LI-NRIMt
KLCf-KNZ

OMA-l* (1.00001)
330 IL-1

IP(LLEKECW) O M0 340
ERR-GM(L, NU)
ERR. (ERR-DES W ) *WT(I)

IPOYI IIP.LE.0.0) GO M0 330

COM-NW*ERR
LOC-LC+10
GO M0 235

340 IF (LC. B. 6) GO M037 0
DO 345 J-1,NFOIS

GO 10 100
350 IH'-IW(NEZ)

DO 360 J-1,NFMiS
360 IEaV(W) -I=(J+1)

IEX(NE) -KM
GO 10 100
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370 wF(JCSGL.(r.0) O MI 100

c NL~xyLM'I or THE ciDEF~iaENIs OF THfE BEST
APRCKIWRTM
c USD13 ME INVERSE DMSCREII FOURIER !1RNSRM

400 COTINUE
?uI-MFQS-1
FSH1 .03-6
Q1I2GPGR.Th (1)
X(EZS)--2.0
CN-2*NPCNs-1
DEJ01 .0/01
L-1

IF(EME(l) .H.0.0.AM1DE(2iERUDS) .E.5) KKK-i
IF (NFCNS. LE. 3) WuK-1

* IF(KKn.E.1) GO MH 405

ENmIPDOS(P2GRM(1R))

AA-2.0/ (1YP3IP-rEU4)
D--(DPDPIUNM / (IYI'DIP-DNRM

C, 405 ONTINUE
DO 430 J-1,NPO1S

IF(WK.BQJ) GO Mt 410
XT-. (XT-BB) /A&

410 XB-X(L)
Ii(X.GT.X) GO MIt 420
IF((XE-X0T).LT.FSH) GO MIi 415
1L1ie*
GO MIt 410

415 A(J)-Y(L)
* GO M425

420 IF((XT-XE) .LT.FSH) O MI 415
GRID (1) -FT
A(J) uGE(1,Ng)

425 COTINUE
IF(L.I. .1) JipiL-

43 0 CONTWIIJE
GRID (1) -ITP
UDEP2/0
DO 510 J-1,WQ(NS
M1300.0

IF(III1.LT.1) GO MIt 505
MO 500 d-1,N

500 UTED'.1M*A(K+1) *DOO (rUM*K)
505 DTEP2.0D'DIPIA(1)
510 KALPA(J) -DIDI4P

MO 550 J-2,NFCNS
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550 XLHA(J) -2*ALPHA(J) /CN

IFCK.BQ.) GO TO0 545
P~l) -2.0*ALIRA(NKN2S) *BB+AtJHAIU)
P(2) u2.*MA*ALFBA(NFCNS)
QWi -ALFIA (CN-2) -ALPBA(NF04)
MO 540 J-2,I
IF (J. LT. NM1) GO, TO 515

Bh.0 .5*MB

515 03WIME
PCJ+) -. 0O
DO 520 1-1,J
ACE -PCI)

520 P(K)-2.0*BB*A(K)
P (2) -P(2) +A(1 *2.O*MA
Jm1-J-1
DO 525 1-1,311

525 PWI -PCI) 40MI .A*A(K+1)
JP1-J+1
DO 530 K'q3,JPI

53 0 PCI) -PCI) +*A (K-1)
IF(J.ED.NM1) GO TO 540
DO 535 K-1,3

535 Q(IW-A(K
Q(1 -0(1) +ALPHA(NF9I-1--J)

540 CONTINUE
DO 543 J.'1,NFOIS

543 ALIUACJ) -P(J)
545 aCINMVE

IF (MNS. GT.3) RETURN
ALFRA(NS9-1) =0.0
ALPHA(N912) -0.0
ETURN
END

DOUBLE PRECLSIMR MJUNCIOI D(I,N1)

C FUNZrIOt4 M CALCJLATE THE LWAWGE n=UUMMONC1
C GOEFICIENS FR USE IN TIHE FIN1(MOIN GEL.

P12 ,AD,DC,X, Y,G~D, =,Wr,ALeA, IS' I NFCNS,WRMD
* - ~DIIISIOK i(514) ,AD(514) ,N.JA(514) ,X(514) ,Y(514)
* DIMMMSIQ DES(824) AR~IDC(824) ,WTC8224)

DOUBLE PRMCSIQM AD,t!.V,X,Y
DOUBLE FIRECSIC14 Q
DOUBE PREISIC4 P12
D-1.0
Q)-X (K)
DO 3 l'1, M



90
DO 2 J-L,NM
IP(J-K)1,2,1

I D2.0*D*(Q(XJ)
2 OONTMNUE
3 CONINU~IE

Dm1 .0/D
RETURN

END
C,
C
C

DOULE RUEXISIcN FUNCRTO GEE(K,W
C
C iU~l3!MO Mi EVALURTE WEE MRQUENCY RESPOSE USING TE
C IJGRANE INTRPOATION FORMULA IN 7HE BARYWM'.RC POF4

COMO
P12 ,AD, 1EV,K, Y, GRIES, W,ALFBA, R ifNS, ICR

DIMENSI DE(8224) ,GRID(8224) ,WT(8224)
DOUBLE ERSKISIX4 P.CDXP
DOUBT~ PRCISION P12
DOUBLE ERB3ISICKq AD, rLV,X, Y
P-0 .0
XPFGRID (K
XP4=fl(P12*XF)
Dl .0
DO 1 .7-1,1
ClXF-X(J)
O-AD(Q) IC
DwD+C

GEE"P/D

C EE

C,
SBROUTINE OUC
PRINT 1

1 FORMATV( FAILURE ITD (ONJE

1 'OPR3MALE CASE 3B MCHIE RO RI! WKR/
2 '07EE II2E RUKUSE MAY BE (XaRECJM/
3 '0OCK= WI'JE A FREDUECY ESPONSE')

am~
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C
C WOY ROUTINE BY& A. JENKNS
C ACM OMSVOL I NO 2 JEtM175
C

SNUF0TINE RPOLY
C FINDS 7RE ZRO OF A REAL MLMYNQIAL
c op - DOUBLE P~m mmCI INva'C OF oDFFiaCm IN
C (It1CR OF D~EEASIN3 MWEIRS.
C WREE - ZNTWR EWRE OF WRE K1LINQIIAL.
C ZM ZWI - (JTUT DCILE PREISIONI VEOR OF
C REAL AMD I1MZnAlRY PARMR OF THE
C ZRO.
C FAIL - CUJT~uw LOGI@RL PARNEE~fUW IE ONLJY IF
C LEADING3 ODFFICDIT IS ZR (R IF RKOLY
C HAS PWK FEWRHA ERE ZRO.
C IN 7HE LAMMU CASE, EE IS RESET M0
C IRE NUMBER OF ZRO IOI.
C M0 CHA1E 71HE SIZE OP KOLINCIIALS WHICH CAN BE
C SOLVED, RESET' IRE DIMEN4SIONS OF THE ARRANS IN IRE
C COMMON AEA A0 IN 7RE F(1.tWIN DCLaA~RICU
C POR SCRLIM, BaJ)EB AND BRO CALCJIATMl1S. ALL
C CALCULATIONS FOR THE ITRAMOI(S ARE DONIE IN
C DOUJBLE PRECS ION.

COxMO/FILE/ ANlP(4096) ,ffASE(4096) ,NFr, ITYPE
CreerlNrAT/ P0, T'L, ITMI, N141
COhIUN /RPOLY P, QP, K, QK, S1K, SR, SI, U,
I V, A, Bf C, D, Al, A2, A3, A6, A7, E, F, G,
2 H, SER, SI, MIR, IZI, MTA ARE, ME, N, NN
MUBZ FR~lISION P(1024), QP(1024), K(1024),
1 OR (1024), SVK(1024), SR, SI,* U, V, A, B, C, D,
2 Al, A2f A3, A6, A7, E, F, G, H, 3Rf SI,
3 IER, 121
REAL M~h ARE, MEW

C OP IS MMENlSIONED TO 4096 SINCE fIT TAKS ITS ARRAY
C FROM SNCRD' S AMP ARRAY.

IXX2BIZ RtECSION (1(4096), T(1024),
1 ZRO(1024), ZRI (1024), T, AA, BB, CC, EIBS,
2 FACO
REAL PI!(1024), ID, LX, MI, 3C, Y!', (DSR,
1 snot, 20CC, x, SC, END, 3ff, FF, DF, u&, InFI,
2 99ML1, BASE

UXICAL FAIL, ZRC
C IRHE FCUM32GD STAMIDW]SET XCINE CU39nVTS USEX)
C IN 7HE VM=IS PRS0 OF IRE PRMAM. 78E MEANING OF IRHE
C FOUJR 03NSTANS MRE..
C EMh THE 1MX11VM RELAMTJE RE DSENAnOCN ERO
C WHICH CPIN BE (DSRIBED AS 7HE SHRULT
C IVSITWVE FLOAT'ING MUMW NMBER SUCH IMW
C l.DOIETR IS GREAER IRAN 1.
C =;7IN IRE LARES FLADC POWI NUBER.
C SMLM1 IRE SWLWMT JSITIVE ILDMTDC POWN
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C NUMER IF THE EXPONENT RANGE DIFFERS IN SINGLE
C AND DOiBLE PRECISICN TIHEN ,.IU) AND INFIN
c IOULD IN=ICTE TE SMALLER RANE.
C BASE THE BASE OF THE FLOM~NG P)INT NUBER
C SYSTEM USE.
C THE VALUES BELCW CORRESOND M1 THE VAX 11-750

BASB-2.
ELTlk1.387779D-17

4-FIN1.7E38
SOI-5.9B-39

C ARE AND 14RE RE)ER TO THE UNIT E IN + AD *
C RESPECTIVELY. THEY ARE ASSUMED M1 BE THE SAME AS
C ETA

ARB-ETRMRB-EM
LO-SMALNO/Egk

C
C INITIALIZE ARRAYS
c

IF (ITYPE.E.1) THEN
PRINT *,'1HIS IS A FREUENCY FILE!'
PRINT * EXPECED AN IMPLSE RESPONSE FILE'

END IF
DBGREERNI14-1
DO 233 I=1,R 1
op(I)-AMf (I)
AP(I) -O.ODO
PBASE(I)-0.0D0
ZER(I) -0 .ODO
ZEROI (I) -0.0D0

233 CONT7NUE
C
C INITIALIZATI N OF CONSTANTS FOR SHIFT RD]ATICN
C

XX-0.70710678
Yy-Xc
DSR--.069756474
SINW.99756405
FAIL- .FALSL.

* ?MSREE
NN.N41

C ALGPI IE FAILS IF THE LEADING CDEFFICIJNT IS Z.O.
IF (OP(1) .NE.0.DO) GO TO 10
FAIL-. TUE.USGREE)0
PRNT *, 'LEADING w FICIENT IS ZO - NOT ALLCWED'
RETURN

C REDWE ME ZEO AT THE ORIGIN IF ANY
10 IF(OP(I.NE.0.0DO) GO M 20

J-DEREEB-N+4
ZER (J) -0.0D0
amp(j) -O.OdO
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ZERI (J) -. D0
phiase (J) -. Odo
NN-N-

GO 1TD 10
C MAZE A CWY OF THBE CDFFnaICI
20 Do 3 0 1-1, NN

PCI) -10I)
30 00NTlNUJE
C START THE AtOQ~I2 FOR QNE ZR
40 IFCN.GI'.2)GO M0 60

IF (N. LT.1) RETUN
C CALULATE THE FINAL ZR OR PAIR OF ZRO.

IF(N.E.2)00 M0 50
ZSERORGEE) -P(2) /P (1)
ZRI WWGRWEE - .0WO

4MPOH3GREE) =ZERO(DWAEE
BM E (IEGRE -ZRI (DEE)

50 CALL QUA(PWl), P(2), P(3) , ZERO(DwamE-1) ,
1 ZRI (DWRE9-1), ZR(EER ), ZRI (DBGREB))

* anp(degree-i) -zeror (degree-i)
iiaae (degree-i) -zeroi (degree-i)
AMP (DBE) -ZERC(DEREE)

* IUME (DBEE) =-ZERI (UEE)

C FIND THE LAIGET AND SMULLET MOWLI OF COEFIaIN
60 MAXO.

MO 70 I'4,!*I

IF(X.NE.0. AMI. LA.MIN) IW~X
70 C(VI'DIUE
C S@,LE IF TERE ARE LAIGE OR VERY SWJL (DEFIENTS
C (DNRJ M A SCALE FACTOR M MUTIPLY THE

* C ODF mCIES OF THE PIOLNMIAL. THE SGILING IS DONE
C TO NOMD C7IVLWf RD TO AVOID UNIETECL'H UNDEFUaN
C W1~3I WITH THE OOWEFQVC CRITEION.
C THE ThCL'CR IS A FOM OF THE BASE.

So.WHI
40 IF(SC.QT.1.0)GD M0 80

IF(MAL.LT.109 )GO M1 110
W(SC.M.0.) So.SIALR

GO TD 90
80 IF(INFDsc.LT.m9XGo m 110
90 L-MM (90 /ALOG(BASE) 40.5

FACTO (BASE*1.ODO) **L
IF(FATME.1.D)GO M 110
D0 100 I-1iUm
PCI) umC1O*P (I)

100 COTINUE
C 03NHJT L1f FR BOUND ONI MVIIJ OF ZRO.

Ij
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110 DO 120 I-1,NN

120 COTINUE
FJT11O-P(NNW

C COMIKIE UPHR ESTIAT OF BOUND

IF(PT(W .E.0.)GO 2TO 130
C IF NWfION STE AT 'WE OIGIN4 IS BETTE~R, USE iT!

X"-pntam /PT (W
IFOG4.LT.X)X-XM

C CHO 7E WWWAL (0, X) UN1TL FF .LE. 0
130 XMX.

FF-PFI(1)
DO 140 1-2,114
FF-EFF*X44PI!(I)

140 COTDI=
IF(FF.LE.0.)GO TO0 150

GO 10 130
150 DX4
C DO NSW'I ITERAT30M UNILU X aONVRGES M0 TWO
C EECIM. PLACES
160 IF(MS(DX/X) .LE. .005)0 MO1 180

DO 170 I-2,N
FF4Y"X+FE (I)

17 0 CONTlINUE
FpfmF'+Fr (NW)
DX-FF/DF
XuiX-DX
GO 70 160

180 BNIW(
C OOMRJTE MffE IEIVATIVE AS THEE INITIAL K PM4R4IAL
C AND DO 5 STEP WflE NO SEIPT

1141-N-i
DO 190 I-2,N

190 OOTNUEm
KW1 -P~i)
AhpP (NW
EBP(N)

DO 230 JJ-1,5
00K(N)
IF(ZB)GO 70 210

C USE S(MLE F01*4 OF RBW104MCE IF VALUE OF K AT 0 IS
C NOWERUD

7h--AA CC
DO 200 1-1,1141
J-1*I-I
K (J) om'(J-1) +P(J)
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200 CONTINUE

K (1) -P (i)
2MOKDBS (K (1O .LLE3ABS (BB) *ETA*10.-
Go MO 230

C USE MffE UNSCALM FORK OF RECURRENCE
210 DO 220 I-1,NMU1

J-N14-I
1 (J) K (J-1)

220 ONTINUE
K(1)-0.DO
ZERK4K(1 .0. 0 -DO

230 COTINUE
C SAVE K FOR RETARTS WI'M NEW SHIFTS

DO 240 I-1,N
121PWI).g(W

240 COTINUE
C LOOP TO S".CJ IHE QUARRAIC GWRRMMIO MM TO EACH
C NEW SHIFT

DO 280 QI'Ih1,20
C QUADMAIC RSND TO A DOUBLE SHIFT TO A
C NCRN-REAL JINT AND ITS CDNHAFEC 0OlNJUGM'E. MSE EOINT
C HAS 14DWLUS BND AND ANHFrlU= WMJ~TED BY 94 DEGREES
C FROM TSE HWIIUS SHIFT

X)Sl-COSR*SRYY

Sl-BND*YY
Uw-2 .ODO*SR

C SECOD STGE CLCLA'TI, FI]XED QUAMMAIC
CRU FXHF(20*lClT,l)
IF(M.BQ.0)GO TO 260

C THEE SB03D STAGE JUNS DIRCMY TO CIE OP MEE THIRD
C STAE ITERATIONS AND RElUlR4S HERI SUCCESFUL.
C JEfL.ATE lEE KILYN01AL, S'IM THE ZER OR~ ZROND
C RL1Ui TO THE MMJ AtGI'IEN.

ZERO(J) -SZR
AMP(J)-SZR
ZI (J) -aI

250 CONTINUE
IF(M.EM.1) GO TO 40
ZERO(J+) -hZR

M1P(J+1) -ZR
*PASE (J+1) -LI I

GO TO 40
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C IF THE ITEATION IS SFEL O R QUADRATIC
C IS CHOSEN AFTER RESTORIN K
260 DO 270 I-1,N

K(I) TW4P(I)
270 OONTINUE
280 ONTINUE
C RETURN W1JH FAILURE IF NO COMECE WIT 20
C SHIFTS.FRII,-. RUE.

R DEGREB-N
RETURN
END

SUBROUTINE FXSHFR(L2, NZ)
C WNRTEs UP MO 12 FIXE) SHIFT K-I(LYNO(IALS,
C TESTING FOR (ONEF EN IN 7IE LINEAR OR QUADRATIC
C CASE. INITIATES 1E OF THE VARIABLE SHIFT
C ITERATIONS AD RETURNS WITH MfE NUMER OF ZEROS
C FNDU.
C L2 - LIMIT OF FIXED SHIFT STEPS.
C NZ - NUBER OF ZE FOJUD.COMMON IRPX, Y P, QP, K, OK, SVK, SR, SI, U,

1 V, A, B, C, D, Al, A2, A3, A6, A7, E, F, G,
2 H, SZR, SZI, LZR, IZI, M ARE, MRE, N, M
DOUBLE PRECISION P(1024), QP(1024), K(1024),
1 QK(1024), SK(1024), SR, SI, U, V, A, B, C, D,
2 Al, A2, A3, A6, A7, E, P, G, H, SZR, SMI,
3 LZR, LZI
REAL EMT, ARE, 1RE
INT'ER N, Mt
DOUBLE PRISIGN SVU, MVV, UI, VI, S
REAL BETAS, BErTn, CS, OVV, SS, W, TS, TV,
1 OTS, OTV, TVV, 25S
INTRER L2, NO, TYPE, I, J, IFLJG
LOGICAL VPMSS, SPRSS, VRY, SUmY

BEIT-.25
B S-.25

OWV-V
C EVALUAT RLIYN(NIAL BY SYNHETIC DIVISI,"

CALL QU AWD(NN, U,V, P, QP, A, B)
aLL CRLCSC(TYPE)

DO 80 J-l,12
C (CA1LQdE NEX K PIUMMAL AND ETIl V

CALL N"XWK (TYPE)

CALL NBD(T(TYPE, UI,VI)VVhVI
C ESTI14TE S

SS0.
IF((.NE.O .DO) S9.-P(MtO/K(N)

79,1.

'.W .. W' . -. ,. , ";e_ d " ,"'i- """'I "?" '"" . . . .. ....... 
" "

' 
'

"" " 
" " " " " "

'" """ " " '" 
"

"" " "" "'""" "" " "" 
" "

" " 
" "

" "" 
" "

"' -" " " 5-
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IPJ. E.I .OR. TYPE. E.3) GO IO 70

C COMUTE RLATI MEASJRES OF CONVEEENCE OF S AND V
C SEQECS

IF(W.NE.0.)V-BS((W-ONVV) /W)
IF(SS.NE.0.)TS-BS((SS-OSS)/SS)

C IF DBCREASI , MULTIPY TWO MOST RECENT
C CCNV GNCE MlEASURES

IF (TV. LT. (i f TVV-W*OTW
TSS-1.
IF (TS. LT. OYi5) TSS-T,*07S

C 0GMPA WiJH cDNVEFGENC QCTERIA
SPAS9-'VV. LT. BEDU
SFAS S. S T.)BEOAS
IF GN. (SASS .CE. VPASS) ) GO M07 0

C AT LEAST ONE SEQUENCE HAS PASSED TE (flVEEGENC
C TEST. STORE VARIABLES BEFORE rTERATIN.

Sv0-U

IX 10 I-i,N9I(I)u.K(I)

10 CONTINUE
BESS

C CHOOSE ITERATION AODRODG TO THE FASTEST
C COVIING SEQUENCE.

ViRY-. FALSE.5STRY-. FALSE.
IF(SPASS .AND. ((.NOT.VPAS) .CR

1 SS.LT.'TVV)) GO TO 40
20 CALL QUADMT(UI,VI, )

IF(NZ.GT.0) RETURN
C QUADATIC ITERATION HAS FA=D. FIX THffAT IT HAS
C BEEN RIED AND IECREASE THE CONVEFGENC CRITERION.

vRY- .TRUE.
BEiW=BEDLV*. 25

C TRY LINEAR ITERATION IF IT HAS NOT BEEN TRIED AND
C THE S SEQUENCE IS (tUJIFG.

IFSiTRY .CI. (.NO.SPASS)) GO M 50
DO 30 I-i,N
K (I) -WK(I)

30 CONTINUE
40 CALL REALIT(S, M, IF-L)

IF (NZ.GT.0) RETURN
C LINEAR ITEATMON HAS FAILED. FLAG WA IT HAS BEEN
C TIM AND DECRFASE THE ONWEEGENE CRITERIONi.

-iRY-. TRUE.
* BEno-BEAS*. 25

IF(IFWG.EQ.0) GO '10 50
C IF LINEAR ITEATIN SIGNALS AN ALMOST DOUBLE REAL
C ZERO ATTEMPT QUAF*ATIC ITERATION.

UI--(SS)
vI-S*S
GO TO 20

4 ' , " " ""., . """" .*."-". -" ,"..',: ,-, .". ',". ,- - , "' :.,-,-.',' ."-..: '''''. ": -. ., '
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C RESITRE VARIABLES
50 U- vU

DO 60 I=1,N
K (I) WK (I)

60 03NTINUE
C TRY QUADRATIC ITERATION IF IT HAS NOT BEEN TIED
C AND TE V SMUERCE IS OWERING.

IF(VPASS .AND. (.N r.Vmtf) GO M1 20
C JREOJ1 OP AD S@LAR VALUES TO OTITUE MBE
C SBOND STFGE.

(aLL QUAESD(NN, U, V, P, QP, A, B)
CALL C(LCSC (TYPE)

70 O V=W

80 COTINUE
REMMR

END
SUBROTME QUADIT (DO, W, ?M)

C VARIAMBID-IT K-KLNGOIAL ITEATICON FOR A
C QUA ATIC FACIOR MWERGES (ILY IF TE ZES ARE
C EQUIMVUJAR OR NRLY SO.
C UU, W - COEFFICINS OF S'ARTING QUAtIC
C NZ - NUJER OF ZRS FOUND

COMMO /RKLY/ P, QP, K, QK, SVK, SR, SI, U,
1 V, A, B, C, D, Al, A2, A3, A6, A7, E, F, G,
2 H, SZR, SZI, LR, LZI, ED, ARE, MRE, N, M
IXXBLE PRECISION P(1024), QP(1024), K(1024),
1 OK(1024), SK(1024), SR, SI, U, V, A, B, C, D,
2 Al, A2, A3, A6, A7, E, F, G, H, SZR, SZI,
3 LR, LZI
REAL EM ARE, HRE
INTER N, M4
DOUBLE PRBCISION UI, VI, UD, W, DABS
REAL MS, M4P, OMP, EE, R HSTP, T, ZM
INTMER NZ, TY'PE, I, J

ICAL TRIED

TRI.FALSE.

V-W
J-0

C MAIN I"X
10 CALL QUAD(1.DO, U, V, SMR, SZI, LhR, lZI)
C REITURN IF ROOTS OF THE QUADRATIC ARE REAL AND NOT
C CLOSE TO MULTIPLE OR NEARLY EDUAL AND OF OPPOSITE
C SiGN.

IF (IIBS(DABS(SER) -MBS(LZR) ) .GT..•01D0*
1 DABS(LLR)) RETURN

C EVALUATE FOLYNUIAL BY QUADRATIC SWTHETIC DIVISION.
CaLL QUAfSD(NN, U, V, P, OP, A, B)

,i.-. ~~. 1 ,?. * -. ~ *~%**.**~*.
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MPkDABS(ASZRmB) 4EABS(MI%B)

C COMPUT'E A RMGaCS BWM CH~ THE !RIflI~IG ER- IN
C EVALUATIW3 P

ZM4-SRCBS(SNL(V))
EB-2. *S(SWL(QP())

DO 20 I-2rN
EB-EE*ZWAS(SML(QP(I))

20 COMTINUE
EH-EE*Z1*P8S(SGL (A) +T)
EID- (5. WER4. *ARE) 'ED- (5. *PMRDI2. *ARE)

1 (ABS(9SGL(A) +T) +BS(SC;L(B) ) *Zg) +
2 2. *ARE*ABS(T)

C ITrATKX HAS cI3W'IRD SU IEND1LY IF THE
C PMYC14aU VALUE IS LES IMA 20 TDMS THIS B(ZflV

IP(MP.GT.20.'EEGO TO 30

RE7JJ
30 J-J+1
C b OP ITIIRATIM AsFER 20 SI

IF MJ OT. 20) EE
IF(J.LT.2)0O 70 50
IF (RWPM. (I.. -1*CR. NP. LT. ClP .CR. MIEDH)

1 GO TO 50
C A(LUb'IIR APPEARS TO BE STALLMThE~HE ODWMENC.
C FIVE FflM SHIMTEP ARME MUM~ WITH A UrV CWMB
C TO THE CLUSI.

IF (RELSTP. ILT. E'M) REL21WET

t)U-URELSTP
V-V+V'RELSrP
allL QMMMS(MAU,V,P,QPAB)
DO 40 1-1,5

CALL NEX(TYPE)
40 OONTINUE

TRIED-.MWE.
J-0

50 oma.Iw
C C@LJLMI NEXT? K ELMMKMAL AND NEW U MM V

GUL CRC(TYPE)
CAML NEX(TYRE)
CALL CALWTC(E)
CALL NaW(TYPE, Ul, VI)

C IF VI IS ZR THE IMIMR IS NUT C~aJUG.
IF(VI.B..DO) EB3
RELSIP-DBS( (VI-V) fyI)

GO TO 10

SUBF4UTINE REALiT SSS, M1, IPLAG)
C VARIABLE SHIFT H EKLYCAL ITERATION~ FOR A REAL
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C 855 - STARTING r1'!ATE
C E - NEUBU OF ZR MUM)

C 111A- FLM TD~ INDICATE A PAIRt OF ZRO NEAR REAL
C AXIS. S

a*"m /DmY/ P, op, x, m~ aVi, SR, SI, U,
1 V, A, B, C, Do Al, A2, Me, A6 , A7, E, P, G,
2 H, 3ZR, SgI, I, III, Me2 ARE, NEE, N, M~
DOXUT IRCSION P(1024), QP(1024), K(1024),
1 QK(1024), WVK(1024), MB SI, -U, V, A, B, C, D,

3 IEv LZI
REAL M~ MA RE

DOUBTLJE iISE Fit, XV, T, S, SSS, DABS
REAL 16, N0, OWP, E

IaMl-N-1
NE-0
S-SSS
nmiL-o
J-0

C MAIN WP9
10 Ft-P~i)
C EVALUATE P AT S

oP (1) -FJ
DO 20 1-2,M*
WW'P ~(I)

oPC(I) -Wv
20 Ct1PNUEw

MP-DABS(WV)
C CONPUTE A RIGROS BOUN ONi ME ERRO IN EWALATIIG
C P

MS-DABS(S)
ED. (WW (ARBI4E) ) *AS(SlL(QPQl))) '

Do 30 1-2,M*
EE9E*MPBS(GL(QPCI)))

30 COTINUE
C ITERATION4 HAS (I3WMG ) WJFIENMWY IF THE
C POLMMaIAL VALUE 1S LESS TH1AN 20 TIM THIS BOUN.

IF(NP.GT.20.((AR~tEE)'ED-MEN))GD M1r 40
NZ-i
SZDMS
s 1-0 .Do
RMURNM

40 J-J+1
C STO~P ITERATM AFME 10 STEPS.

IF(J.QI".10) EIU
IF (J.L2. 2) O MI 50
IFCMABS(T) .GT. .001*WBS(S-T) .cia. mp.LEma)

1 O I 50
C A CLUSTER OF ZERO NEAR THE REAL AXIS HAS BEEN
C DKXNIE.REMMUITH wiM MW SET MI INITIATE
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C QUOARATIC ITERATION.

IFLAG-1
SS9-S

C RETUMN IF TE lM:LW L VALUE HA INCREIASED
C SIGN.MLUI14Z.
50 QaNp-
C COMMM T, THE NEfr lC NaIAL, AND THE NEW ITERATE

[V-K (1)
G(1) -KV
DO 60 I-2,N
KV-KV*S+K (I)O(I),4V

60 CONTINUE
IFC(IBS(IV) .LE.ABS(K(1 ) *10.*M)GO TO 80

C USE THE S(LE) POW OF THE REfJRECM IF THE VALUE
C OF K AT S IS NCEaRo

T--P/Kv
K(1) -QP(1)
DO 70 I-2,N
K(I)- K (I-1) P(I

70 CONTINUE
GO TO 100

C USE SCRLH) FOI4
80 K(1) -0.ODO

DO 90 I-2,N
K (M -K (I-l)

90 CNTIUIJE
100 KV-K (1)

DO 110 I-2,N
KVKV*S+K (I)

no COTINUE
TO.D0
IF (DABS(KV) .QT.DABS(K(10 ) *10. *EM) T--W/KV
S-S+lT
GO TO 10
DID
S BIN CRLCS (TYPE)

C THIS 11IOUINE (CLATES SCALA QWNTITIE USED TO
C ODIEIE ME NM K POL(NIAL AND N31 ESTIlWW OF
C THE QUADRRAIC (DEFFIIENTS.
C TYPE - NsMER VARIABLE SET HERE UIN(IN-- HOW ME
C CRLCUIATMS ARE NCH IZE) TO AVOID
C CVERFL.

COMM /F4PY/ P, QP, K, QK, SVK, SR, SI, U,
1 V, A, B, C, D, Al, A2, A3, A6, A7, E, F, G,
2 B, SMR, SZI, lZR, IZI, EM ARE, PRE, N, NN
DOUBLE RECISION P(1024), QP(1024), K(1024),
1 0C1024), SiK(1024), SR, SI, U, V, A, B, C, D,
2 Al, A2, A3, A6, A7, E, F, G, B, SZR, SnI,
3 IER, LII

REAL ETA, ARE, MRE
INTER N, MN

* -- ,. . . . . . * - .*-* *-~ * -
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DOULE PRSIOt4 IABS
Th1ER TYE

C SYNEWIC DIVISI CI O K BY THE QUAZILATC 1, U, V
CRU QEWW~(N, U, V, K, QK, C, D)
IF(IABS(C).GT.IRBS(K(W)*100.EA)GO T~O 10
IF (DBS (D) GT. DABS(K (N1))*100.E=m GO MO 10

C TYE3 ThDIAM 7IE QUARATIC IS AtJVS A FACTOR
C OFP K.

10 IF(DABS(D).LT.DABS(C))G0 M 20
TYP-2

C TYPEz2 INMTEM T ALL FRMULAS ARE DIVEMZ BY D
E-A'

A3- (A+G) *1)H*(BID)
A1-B'F-A
A7-(F+U) *A+H.
REIRN~

20 TP-
C TY~1 m@JTEM TIM ALL EFIMJIAS ARE DIVIDED BY C.

'.0D/C
G-U*E

MWEA'F(H/C+G) 'B
Al-B-A* W/C0
A7-A*G'D4H'F

SEIBF40TINE NE1'K(TYPE)
C 03NEUTS THE NEUP K PftIG!IALS USIE S~ICARS
C COPUTE I CRCSC

Commi /RKLY P. WP, K, QK, SVK, M;4 SI, U,
1lV, A, B, C, D, Al, A2, A3, AG AW, E, F, G,
2 H, SZR, SMI, LiE, III, ETA, ARE, PRE, N, M1
DOUBLE RISCI V(1024), QP(1024), K(1024),
1 gQ(024), SrK(1024), SR, SI, U, V, A# B, C, D,
2 Al, A2, A3, AG A7, E, F, G, B, SER, 51,
3 iE, IZI

REAL ETN ARE, ME

INEGE TYPE
IF(TYPEA0.3)GO TO 40

IF(DABS (AD) XT. BS (TEMP) *E5R*10.) GO M0 20
C IF Al IS NEARLY ZERD THEN USE A S1~aIPL PF44 OFP THE
C RECURRENCE.

KW1 -O.DO

..- ~ ~-e.-, r., ~ ~ * - .*.* -
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K (2) -A7*QP(1)
MO 10 1-3,N

10 C1JHTINE

C USE S@RLED PFN4 OF M~E RMCRRNC.
20 A7-A7/A1

A3-IA3/Al
K (1) -QP (1)
K(2)-QP(2) -A7*QP(1)
MO 30 I-3,N

30 COTNUE

C USE U1NCALH PF44 OF THE RJURRE IF TYPE IS 3
40 K (1) -0. DO

K (2) -. DO
DO 50 I-3,N

so ONTINUE

END
SBROUTINE NEWEST(TYPE, UU, W)

c (flMIU E NEW Es~i1ATEs oF THE QuAERATic WWFInWJB
c usIrx 7aE scumRs coHI! Ti c@LC-SC

(XOh6U /P.KLY P, QP, K, (K, SJK, SR, SI, U,
1 V, A, B, C, D, Al, A2, A3, AIS, A7, E, F, C,
2 H, SZR, SZI, MCR, IZI, ETA ARE, M6E, N, Mt
DULE HECSIW P(1024), QP(1024), K(1024),

1 QK(1024), WJK(1024), SR, S1, U, V, A, B, C, D,
2 Al, A2, A3, A6, A7, E, F, G, H, SR, SOL
3 I~ LZII

REAL L'Th ARE, ME
INT~ME N, MI
DOUBLE HUMECISICt~ A5,B1,B2,C2,C2,C3,

I C4, TEMP, tKJ, W
INTE TYPE

C USE PMMAS APHMRI'E TO SM7Il1 TYPE.
WF(TYP.1.3) GO TO 30
I(TPEA.2) GO M~ 10
A&-AU*B+H*F
A5-C4 (U'*)*
GO TO0 20

10 Ad-(A40G)*F$B
A5- (F-0U *C+V*D

C EVALUAMh NEW QUAMRATIC IODE'ICIDE'J5.
20 Bl-K(N)/P(?a8

ClV*B2*AM

C2mUl*A7
C3-B1'B2l A3
C4-C2-C3

- - - - - - - a



105
IF(TEMP. E.0O.D0) GO TO 30
U~ U* (C3c2) 4+V* (BI*A2+B2 *A7) /TPI
W-V (1.+C4/TEMP)

C IF TY3 THE QUAMATIC IS ZRE.
30 UO.m0.DO

W"i0.D0
RE7JJRN

aMl.JINE QtWM(NN, U, V, P, Q, A, B)
C MIV P BY THE QUADRATIC 1,U,V PLAIN 7HE
C QUODIEDI IN Q AND THE REMUNEAR IN A, B

D(MLE EPRJIICN4 P(NW, WINO, U, V, A, B, C
INTEGER I

0(l) -B
A"P(2) -UAB
Q(2) -A

DO 10 I-3,NN
O"P(I) -U*A-VB

B-A
h.-C

*10 001ThUE

a~l(IIE QUAD(A, Bl, C, SR, SI, L0, LI)

C (~CJMLAE 7HE ZRO OF THE QUADRATIC A*Z**2+Bl*Z+C.
C THEE QUAMVIC PESNILA, HKDIFIWD TO AVOID
C OVERPEiC, 3S USED TO FIN THE LARGER ZR IF THE
C ZRO ARE EAL AMD BOM ZRO ARE 03ONHJL
C THE SMALE RFAL ZERO IS FOUND DIRK=LY FRO! THE
C xRaxicr oPW ZRO c/A.

D=UL RESION A, El, C, SE, SI, t LI, El,
1 D, E, rABS, IM

IF(A.NLO.DO) GO TO 20

LRw0 .DO

10 SI-0 DO
LI-0.DO
WEN

20 IW(C.MLO.DO) GOTO 30
SR"0.DO
Lib-Ri1/A
GO TO 10

C COFlMITE ISCIM114MT WOIDING OVERPLCW.
30 B-Bl/2.DO

IF ABSI(B) .LT. DABS (0) GO TO 40
Eo1 .O- (A/B) * (C/B)
D.C6M(DABS(E) ) *DABS(B)
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GO ITO 50

40 -
IF(C.LT.0.DO) Ew-A
B-B*(B/DABS(C) )-E

50 IF(E.LT.O.DO) GO TO 60
C REAL ZRO.

rF(B.GE.O.DO) D-V
IA- (-B4D) /A

IF(LLO.DO) S1R"(CIMR/A
GO M010

C COMB=C cttItXME ZRO.
60 SR~-WIA

SI-DABS CD/A)
LI--SI

4EM



APPENDIX C

OPTIMAL COMBINATION AND RECONSTITUTION PROGRAM
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C

m3jqjcFl"-E ClO

C 7IS NOJTMiE GENERAT!M ALL POSSIBLE, NON REPAT=N

C C0MBZNATIQS OF N SAMLES ThK2 R AT A TIM.
C AWC1UISM. ADAP1!fl FROM
C APPLIED COMMBNA701IAL WMEATICS
C WME24
C KOLYK ET AL 1964
C JCHN WnME AMD SCHS, INC, NEW V)RK

aCOMMOFILE/ AMP(4096) ,PHASE(4096) ,NFP', ITYPE
aVmT/Fo, FLO, HIl, NIJ

IWXHR C(1024) r G(1024), A(1024)

IF (ITYPLE.0) 7m
PWT*** NW TO CWTAIN Z FIRST w

ED IF

IP (DOREE.GT.35) THEN

L~N I, ***** WARNIn ****

atmF TIM~T* WI ICE

DO 289 I-1,ARE

289 C~lTINUE
'~T7UPO
N-DB~rEF2+2
IF ((FLOM?(W-FLOft(DBaEE)/2.OD) .HLO) THEN

N.N41
ZERO(DWRE4~) -0.ODO
ZRI (DW~REE~1) .0 .ODO

END IF
C
C INIIALIZE ARMY C

DO 140 1-1,N

DD 5 K.0,1V2
PRIMT*,K,' AT A TIMOR Hl'
mnRW *,TOOrL,' ClOMBNi&TzCs TESTE SO PA'
IF (K. E. 0) GO TO 1200

C
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C M3ITIALIZE M BEGIN
C

TC-1

300 G(T)-(ACT))
IF (T.BD.K) GO M1 1200
AC(T+1) -AC(T) +1
IF (A (T+) .BD. (l+) GoIY 900o
'I'.T4
GO M1 300

900 IWP-1
IF (T. ED.0) 00 M1~ 5
GO M1 1300

1200 CA~LL

1 ~E''1WO, IVIEST,NBI4CBEST)

IF (K. B. 0) GO M1 5
1300 ACT -ACT) +1

IF (A(T).EQ. (1+0) GO 0 900o
GO M1 300

S CONtTINUE
0wr *** AIL ITERATIMS WKH.L'EE

PRINT *,' 1 O7AL COMINATIONS -''OA

PRfIT *# 'BEST EESIGN FOUND0

MO 888 L-1,IMIEST

AMP(W =-MttMEW
PHASEW (I 0.0

888 CONINUE

PI0 .5

'IYHI-(MM-) /2.0

CIL WRITE
PRINT

PRINT *6, TWBDXER 2:1

DO) 889 Lm1 ,IfCBEST

PRIT f L) ,L -U 1) WTW(

PHMSE(L) w.00
889 TDIUE

ITYE-1

PO0 .5

%FLA%-(N%.7l /2.0.*.*-~.
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TIFHI- (NI.J-l) /2.0
CALL WIT=

RETURN
ED

1 EBE7=MO UIBET, MWOBET)

C SUBIWTINE TOD EOMR Hi AND H2

DOUBLE IMISION ZEUM(1024) ,ZRI (1024)
DOUBLE MBELSEN2 AMEQO24), ASWlO(1024), B(3)
DOUBLE PRECISION CrzlE(1024), ClWO(1024)
DOU.BLE PREIBSIONI HCNE(1024), ffIWO(1024), HM~, 3U14
DOBLE RMISEN2 BBESMtI(1024), EBESM]O(1024)
DOUBLE PRBSMNt MV FOIU1D), IONOE, Flfwo, AA, BB
DOUBLE PRECISIONI FRAT, HBaO11(1024) l

nMR r K, ZQJXJNE, G3YJNI, I I, JJ, JJJ
INTEGER E&E, HM, I3BET, HIEBT

C CBTAIN hi AND h2

DO 11 rp1,1025
AM E(W ).OD0
RIWO(L) uO.ODO

11 QJONUEm
C
C SMW A ZERO3

DO 5000 JJ-1 ,RE
A.ZRM(JJ)

C IF 11W PART IS VERY SMLL, LOT MIS BE A LINERR FACTOR

IF (DABS(BB) .LT.1 .OD-10) BB0.D0
C
C IF IT IS THE 0OKKM (XJKJWAE ilOOT (I. E. DMW PART'

C MEN SKIP IT, SINCE1 IT WILL GET PCM UP BY TE
POSITIVE
C IMG QULRAT'IC FA~a
C

IF (B.LT..ODO) GO MQ 5000
C
C CREATE A QUAWRATIC FATO FROM A 030MJ SM OF ROUTYS,



C A LINEAR FACTOR FROM A REAL HOOTP.
C

B (1) -AM*A&IBBtBB
IF (BB.ED.0.0D0) B(1-AA
B (2) -~2.0ODO*MA
If (BB.M.0.00) B(2)-1.ODO
B(3) -1.ODO
IF (BB.B...0D0) B(3)uO.ODO

C
C FOR ME SPECIAL CASE OF 7BE RMTIRE ThPZSFl mj~aczm oN
C CNE TRANSDUCR CELY, LET! hi BE AN IMPULSE (=I).
C

IF OK.EQ.0) MEN~

KJNEW.1.D

END IF
C

IF (GOtAJNI.GT.K) GO M0 232
C
C INCOORATME IBE LINEAR OR QUA0RATIC FATO INIU TE
C hl. POLYNOMIAL
C

IF (ZO0UN.E.G(Ga=JN)) MEN

* K~PLYMULTOEIE, B, CONE, SCOlW, GCXOfJ, BB, HONE)

GO M0 5000
ED DIF

C
* C INXRMTE THE LINEAR OR QUADRATIC MCI'OR IN0 ME

C h2 POLYNOIAL
C
232 IF (ZGXJWLNE.G(GCDJNr)) lEU4

1OLYMULT(PMW, AW~, B, CiW, ZCtXJNI', GCUN,BB, H=)
ED IF

C
'S5000 ONTINUE

C SC1 1E 7HE 0019FIENTS M0 MAXIMUM OF 1
C

H191X-O .ODO
.4 DO 96 IP1,IMlIE
4 IF cBSs(aliE(L)).GT.B14W H3X4-BS(BcO4E())

96 CONTINUE
MO 97 IP1,ICNE
BONE (L) -alEm(L) /DWCX

HDRX.0 .ODO
DO 98 L4,'mm(
IF GDBS(flrO(L).GT.HKI HMAXuEWBS(ffl'O(L)

98 CONTIINUE
DO 99 IPIAW
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ffD (W -if IO /HAwX

99 COTNUE
C
C DEEMIE MIE FIGURE OF MERIT FOR THE ]DESIGN
C

IF (K.0.) 2EN2

FOIUXX .0E
E2MDIF
DO 348 Ii1,dVNE

348 CONTINUE
DM 349 I,.1+K)NE,1tIB-M!=

349 CONTllINUE

C IF 71EIS IS 78EE BEST ]DESGN RELATIVE M0 ALL PATCNS
C SAVE THE RESLTS.
C

IF (FOIL ar. F1OIUJ 71EN
PRINT *1 1 * BEST YET EUaLOKS

MONBES-NE

DO ill II-1iOIE

DO 2222 II-1,MWO

2222 COT7hUE

C OPIOA CM M0 PROI SPECIFIC IF0HWNICliONCERMC
C THE NtURE OF EAH SWLI R=71 (I. E. , PRSMD OR
C ST10HUHD, REAL JOR cONRNEJC

c GMUNI'l
c DO 1234 II-JREE

c ~Ah.ZRO(II)

cIF (DABS(BB).LT.1.OD-10) BB-0iD
c IF (BB.LT.0.ODO0) G0 M0 1234
cIF (GaNT. GT. K) CiQ M 217
cIF (Z0mr.N.G(G1O0NT)) TME~i

c AADABS( 1 .DO-D6M(AA*A&9+BBBB))
c IF (AALLT.1.O0D-4) PRINT *03131IDI

c ~IF WILG.1.O0D-4) PINT ,PMPAS33=
c IF (BB.BQ.O.00) PRINT *,'REAL'
c PRW4T *f,'
c 01N-OUN

I Jill . . -
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c GCOJNTmGOWNr+~1
c GO M 1234
c ENIDIF
c 217 IF (ZCEXJN.NE.GCGCIXJNl)) THEN
c PRINT *f 'B2 ZER: ,AA,' +/-',BB
c AA.-DBS(1.DO-DSQR(AA*AM+BBtBB))
c IF (AALLT.1.OD-4) R.INT ,&1BAD
c IF (AA.GE.1 .OD-4) PRINT *, PASSBAND'
c IF (BB.M~.O.ODO) PRINT *,'REAL'
c PRINT *,1
c ZCDUNr-ZoLNP41
c END IF
c 1234 CDNTINL1

END IF
C

RET1URN
C

END
S C

SBROUTINE HSTATS(X, M, "0M
C
C THIS SUBROUTINE DEITRMINES THE STATISTICS OF' THE SAMLE
C AND RETURNS THE FIGURE OF MERIT (F014)
C

DOUBLE PREKISIWN X(1024), XMAX, )X4IN, XhVG, WVAR
DOBLE PRCSION FK, MUM, )UMJ, XRU3E
IN'ThKE K
XSUW-O .ODO
2G4AX . ODO
XMIN-~1 . 020
xixnio .ODo
DO 10 I1iM
XDEJMXIIJ*-X (I) *X (1)
XSUI9XSUMEMAS(X (D)
IF (DABS(X(I).GT.)IIAX XMAX)BS(X(I))
IF WXI) .0.0.0-DO) O TO0 10
IF 0DABS(X(I)).LT.X.IlN) XMINIABS(X(I))

10 CON~TINUE
XikVG-XSJM/LEZ(M)

XVAR(MTP(M*)MM-XS*XS /(ME( * (MLE(M)-
1.0DO))

XRNI XAX-UIIN
IF OLVAR.0.0.0DO) XVA-.1.0D-10
FlOM-X&VG/ (XURGE*XVAR)

35 REMURN
END

C
C POLYNCKEL RE-I&'flUTM~ SUBROUTINE. THIS ROU)TINE TAKES
C THE LINE R QUAMATC ffLCI'R AND MULTIPLIES rr BY THE
CURRN
C KLAXN41AL.
C

SUBRUTINE FOLY(JLT KM A, B, C, ZCDUW, GaXN, eBB )
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DOUB HUX:ESIN A(1024), B(3) ,H(1024)
DOUBLE PRBCISMNt C(1024), BB
INTWiER ZoxWi, K

C
C IF NO COMMN P(UYNMCIl& YET ECS71, 7HEN THE FA~UM

C 7BE CURRENT! PKLYNMIAL.
C

IF (14.00.) 7Hai
MO 1002 Itl,3

A(L)-=B(L
C(L)-B(L)

1002 ONTINUE
Hii
GO TO 1421

END IF
C
C IF 7HE CU1RET 1P&LqIaU IS OF OM GRLWE, 'MM
7MREE, THE
C RaaI E RL '~PAPPLIES.

IF (M.G'I.3) THEN
DO 1001 rp3,M
C(L) .(3) 'A(Lr2)
C(L) -CCL) 4B(2) *A (L-1)
CC-CL)4B(1) 'A(l)

1001 CONT'INUE
END IF

C
C DUJE TO VARIAMLE ADDRESING LIMIIa4OS, TNM (RRE OF THE

C HIGHE aaZ AND 7HREE IL0CW 10RWR COEFFICIENT MRNUALLY

C (142) -B (3) *ACM1)
CCM~i) -B(3) *ACM-i) -+8(2) *A(K)
C(3)-B(3)*A~i) +B(2)A(2) 48C1) *AC3)
C(2) -B(2) 'A Cl) 40(1) *A(2)
CC1) -B(1) *A~i)

C UI~ THE IUSUR OF ZEO USED.

1421 ZCXJN'.ZDNTl'l

C MMICREAES BY 7WO FOR A QUAIRATC FAC[, INE PIOR A
C LINEAR FAKI

IF (ElB.NE.O.ODO) M42
IF (BB.10.0.D0) 1mM

C EUWBLISH 'ME NEW CURN POLYNOKEAL
C AND 2HE NEW IMPULSE RESPONSE
C

DO, 131 Ipi,M4
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A,(L).,,C1

H(L) -C(L)
131 COTINUE

I~

E

- - - --

Fr .-... r,,
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